期刊文献+

乳腺X射线数字影像中钙化点感兴趣区域提取方法 被引量:1

Selection of Region of Interest for Calcification in Mammograms
下载PDF
导出
摘要 为乳腺X射线影像计算机辅助诊断做前期预处理,研究了乳腺图像处理中钙化点感兴趣区域提取的问题。在对乳腺X射线图像进行基本的背景分割后,首先运用改进的区域扩张法实现了对乳腺图像中乳腺区域的提取,然后对乳腺区域部分采用改进的反锐化掩模法进行图像增强,突出钙化点区域,再根据含钙化点的特征选取合适的阈值提取出可能含有钙化点的感兴趣区域(ROI)。试验表明,该方法可完成对乳腺影像的ROI提取处理,有助于提高乳腺疾病诊断的准确率。 To preprocess mammograms for computer-aided diagnosis, this paper mainly researches the extraction of calcification region in mammograms. After the background segmentation to mammogram, it firstly makes the pick-up of the mammary region by using the improved area extension, and then uses the method of improved unsharp masking for image enhancement in the pick-up of the mammary region. It highlights the region of calcification points, and picks up the region of interest (ROI) which may contain calcification based on the characteristics of calcification and a suitable threshold. The result shows that this method can complete the extraction of calcification region of interest, helping to improve the accuracy of diagnosis of mammary diseases.
出处 《计算机系统应用》 2010年第2期83-85,66,共4页 Computer Systems & Applications
关键词 乳腺图像 钙化点 感兴趣区域 区域扩张 反锐化掩模法 mammogram calcification region of in,rest area extend unsharp masking
  • 相关文献

参考文献4

  • 1Yuan X, Shi PC. Physics Based Contrast Marking and Inpainting Based Local Texture Comparison for Clustered Micro-calcification Detection. MIC-CAI(2), 2004,32(4):847 - 855.
  • 2LiLY ChenWN.A robust and completely deterministic method for gray level picture thresholding[J].模式识别和人工智能,1993,6(3):235-241.
  • 3博斯.吴镇扬,周琳译.数字信号与图像处理.北京高等教育出版社,2006,7:665-670.
  • 4李树楠,万柏坤,马振鹤,王瑞平.基于小波变换的乳腺X线影像微钙化点感兴趣区域提取新技术[J].生物医学工程学杂志,2005,22(2):360-362. 被引量:7

二级参考文献5

  • 1Amendolia SR,Bisogni MG,Bottigli U,et al.The CALMA project: a CAD tool in breast radiography.Nuclear Instruments and Methods in Physics Research,2001;46:107.
  • 2Papadopoulos A,Fotiadis DI,Likas A.An automatic microcalcification detection system based on a hybrid neural network classifier.Artificial Intelligence in Medicine,2002;25:149.
  • 3Lee SK,Lo CS,Wang CM.A computer-aided design mammography screening system for detection and classification of microcalcifications.International Journal of Medical Informatics,2000;60:29.
  • 4Papadopoulos A,Fotiadis DI,Likas A.An automatic microcalcification detection system based on hybrid neural network classifier.Artificial Intelligence in Medicine,2002;25:149.
  • 5Mallat S.A theory of multiresolution signal decomposition: The wavelet transform,IEEE Trans PAMI-11,1998;7:674.

共引文献6

同被引文献6

  • 1张光玉,龚光珍,朱维乐.基于克隆算法的彩色图像边缘检测新算法[J].电子学报,2006,34(4):702-707. 被引量:20
  • 2王瑞平,万柏坤,高上凯.独立分量分析在乳腺钼靶X片感兴趣区域提取中的应用[J].中国生物医学工程学报,2007,26(4):532-536. 被引量:6
  • 3Lee S K,Lo C S,Wang C M,et al. A computer aided design mammography screening system for detection and classifica- tion ofmierocalcifications[J]. International Journal of Medical Informatics, 2000,60:29-57.
  • 4Papadopoulos A, Fotiadis D I, Likas A. Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines[J].Artificial Intelligence in Medicine, 2005,34(2) : 141-150.
  • 5Yang J, Zhang D, Frangi A F, et al. Two dimensional PCA.. a new approach to appearance-based face representation and recognition[J].IEEE Trans,2004,26(1) :131-137.
  • 6Turk M,Pentland A. Eigenfaces for Recognition[J].Cogni- tive N euroscience, 19 91,3 : 71-8 6.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部