期刊文献+

人脸遮挡区域检测与重建 被引量:10

Face Occlusion Detection and Reconstruction
下载PDF
导出
摘要 提出一种基于模糊主分量分析技术(FPCA)的人脸遮挡检测与去除方法.首先,有遮挡人脸被投影到特征脸空间并通过特征脸的线性组合得到一个重建人脸.计算重建图与原图的差图像,加权滤波后并归一化作为被遮挡的概率,以此概率为权重由原图和重建图合成新的人脸.在后续迭代中,根据遮挡概率使用模糊主分量分析进行分析重建,并使用累积误差进行遮挡检测.实验结果表明,算法可精确定位人脸遮挡区域,得到平滑自然的重建人脸图像,优于经典的迭代PCA方法. Face occlusions (such as glasses,respirator,scarf,etc.) can degrade the performance of face recognition and face animation evidently. How to remove occlusions on face image quickly and automatically becomes a important problem in face image processing. A face occlusion detection and reconstruction algorithm based on fuzzy principal component analysis (FPCA) is proposed in this paper. The main framework is based on analysis and synthesis techniques. In analysis step,optimal coefficients are estimate from occluded face by project to face space (eigenfaces) in the sense of least-square minimization (LSM). In synthesis step,reconstructed face is obtained by linear combinations of prototypes. Then,difference image is computed from original and reconstructed face,and it is filtered by weights calculated from distance and gray level gap from current pixel to its surrounding neighbors,and normalized to [0 1]. This difference was used as the probability of being occluded. New face is synthesized by weighted sum of reconstructed face and original face based on this occluding probability. In succeeding iterations,fuzzy PCA in stead of classical PCA is used for analysis and reconstruction,and accumulated error is used for occlusion detection. Experimental results show that the proposed algorithm could detect face occlusion precisely and reconstruct smooth natural face,outperforming classical iterative PCA method.
出处 《计算机研究与发展》 EI CSCD 北大核心 2010年第1期16-22,共7页 Journal of Computer Research and Development
基金 中国科学院自动化研究所开放课题基金项目 北京市重点学科建设项目(XK100080537)
关键词 人脸遮挡检测 人脸重建 特征脸 主分量分析(PCA) 模糊主分量分析(FPCA) face occlusion detection face reconstruction eigenface principal component analysis (PCA) fuzzy principal component analysis (FPCA)
  • 相关文献

参考文献17

  • 1Saito Y, Kenmochi Y, Kotani K. Estimation of eyeglassless facial images using principal component analysis [C]//Proc of IEEE ICIP'99. Piscataway, NJ: IEEE, 1999:197-201.
  • 2Wu C, Liu C, Shum H Y, et al. Automatic eyeglasses removal from face images [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(3): 322-336.
  • 3Park J S, Oh Y H, Ahn S C, et al. Glasses removal from facial image using recursive error compensation [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(5): 805-811.
  • 4杜成,苏光大.用于人脸识别的正面人脸图像眼镜摘除[J].清华大学学报(自然科学版),2005,45(7):928-930. 被引量:11
  • 5Wu J, Trivedi M M. A regression model in tensorPCA subspace for face image super-resolution reconstruction [C]// Proc of the 18th Int Conf on Pattern Recognition(ICPR'06). Piscataway, NJ: IEEE, 2006:627-630.
  • 6Colombo A, Cusano C, Schettini R. Detection and restoration of occlusions for 3D face recognition [C]//Proc of IEEE ICME'06. Piscataway, NJ: IEEE, 2006:1541-1544.
  • 7Hwang B W, Lee S W. Reconstruction of partially damaged face images based on a morphable face model [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(3) : 365-372.
  • 8Smet M D, Fransens R, Gool L V. A generalized EM approach for 3D model based face recognition under occlusions[C] //Proc of IEEE CVPR'06. Los Alamitos, CA: IEEE Computer Society, 2006:1423-1430.
  • 9Tsuda K, Ratsch G. Image reconstruction by linear programming [J]. IEEE Trans on Image Processing, 2005, 14(6) : 737-744.
  • 10Mo Z, Lewis J P, Neumann U. Face inpainting with local linear representations [C]//Electronic Proceedings of British Machine Vision Conference. Piscataway, NJ: IEEE, 2004: 399-407.

二级参考文献6

  • 1Phillips P,Grother P,Micheals R,et al.FRVT 2002:Evaluation Report [OL].2003.http://www.frvt.org/FRVT2002/documents.htm.
  • 2WU Chenyu,LIU Ce,SHUM Heung-Yueng,et al.Automatic eyeglasses removal from face images [J].IEEE Trans on Pattern Analysis and Machine Intelligence,2004,26(30):322-336.
  • 3JIANG X,Binkert M,Achermann B,et al.Towards detection of glasses in facial images [A].International Conference on Pattern Recognition [C].Los Alamitos,CA:IEEE Computer Soc,1998.1071-1073.
  • 4WU H,Yoshikawa G,Shioyama T,et al.Glasses frame detection with 3d hough transform [A].International Conference on Pattern Recognition [C].Los Alamitos,CA:IEEE Computer Soc,2002.346-349.
  • 5Saito Y,Kenmochi Y,Kotani K.Estimation of eyeglassless facial images using principal component analysis [A].International Conference on Image Processing [C].Piscataway,NJ:IEEE,1999.4:197-201.
  • 6SU Guangda,ZHANG Cuiping,DING Rong,et al.MMP-PCA face recognition method [J].Electronics Letters,2002,38(5):1654-1656.

共引文献10

同被引文献75

  • 1杜成,苏光大.用于人脸识别的正面人脸图像眼镜摘除[J].清华大学学报(自然科学版),2005,45(7):928-930. 被引量:11
  • 2侯鸿川.面部温谱图身份识别技术探讨[J].中国人民公安大学学报(自然科学版),2005,11(3):17-21. 被引量:3
  • 3刘晓旻,章毓晋.基于Gabor直方图特征和MVBoost的人脸表情识别[J].计算机研究与发展,2007,44(7):1089-1096. 被引量:26
  • 4Chenyu W, Ce L, Shu M. Automatic Eyeglasses Removal from Face Images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26(30) : 322-336.
  • 5Colombo A,Cusana C,Schettini R. Detection and Restoration of Occlusions for 3D Face Recognition [C]//IEEE International Conference on Multimedia and Expo. 2006:1541-1544.
  • 6Smet M D,Fransens R,Gool L V. A Generalized EM Approach for 3D Model Based Face Recognition Under Occlusions[C]// IEEE International Conference on Computer Vision and Pattern Recognition. 2006 : 1423-1430.
  • 7Tsuda K, Ratsch G. Image Reconstruction by Linear Program- ming[J]. IEEE Transactions on Image Processing, 2005,14 (6) 737-744.
  • 8Mo Z, Lewis J P, Neumann U. Face Inpainting with Local Linear Representations[C]//Electronic Proceedings of British Machine Vision Conference. 2004: 399-407.
  • 9Zheng W S, Lai J H. Regularized Locality Preserving Learning of Pre image Problem in Kernel Principal Component Analysis [C]//IEEE International Conference on Computer Vision and Pattern Recognition. 2006: 456-459.
  • 10陈雪蓉,敬忠良,孙邵缘.一种处理红外人脸识别中眼镜干扰的方法[J].上海交通大学学报,2010,8(11):41-49.

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部