期刊文献+

基于KL距离的非平衡数据半监督学习算法 被引量:11

A Semi-Supervised Learning Algorithm from Imbalanced Data Based on KL Divergence
下载PDF
导出
摘要 在实际应用中,由于各种原因时常无法直接获得已标识反例,导致传统分类方法暂时失灵,因此,基于正例和未标识集的半监督学习顿时成了理论界研究的热点.研究者们提出了不同的解决方法,然而,这些方法都不能有效处理非平衡的分类问题,尤其当隐匿反例非常少或训练集中的实例分布不均匀时.因此,提出了一种基于KL距离的半监督分类算法——LiKL:依次挖掘出未标识集中的最可靠正例和反例,接着使用训练好的增强型分类器来分类.与其他方法相比,不仅提高了分类的查准率和查全率,而且具有鲁棒性. In many real applications,it's often difficult or quite expensive to get labeled negative examples for learning,such as Web search,medical diagnosis,earthquake identification and so on. This situation makes the traditional classification techniques work ineffectively,because the precondition that every class has to own its labeled instances is not met. Therefore,the semi-supervised learning method from positive and unlabeled data becomes a hot topic in the literature. In the past years,researchers have proposed many methods,but they can't cope well with the imbalanced classification problem,especially when the number of hidden negative examples in the unlabeled set is relatively small or the distribution of training examples in the training set becomes quite different. In this paper,a novel KL divergence-based semi-supervised classification algorithm,named LiKL (i.e. semi-supervised learning algorithm from imbalanced data based on KL divergence),is proposed to tackle this special problem. The proposed approach firstly finds likely positive examples existing in the unlabeled set,and successively finds likely negative ones,followed by an enhanced logistic regression classifier to classify the unlabeled set. The experiments show that the proposed approach not only improves precision and recall,but also is very robust,compared with former work in the literature.
出处 《计算机研究与发展》 EI CSCD 北大核心 2010年第1期81-87,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60673137 60773075) 国家"八六三"高技术研究发展计划基金项目(2009AA01Z149) 上海市教委科技创新项目(10ZZ33)
关键词 半监督学习 非平衡 KL距离 朴素贝叶斯 LOGISTIC回归 semi-supervised learning imbalance KL divergence nave Bayesian logistic regression
  • 相关文献

参考文献11

  • 1Manevitz L M, Yousef M, Cristianini N, et al. One-class SVMs for document classification [J]. Journal of Machine Learning Research, 2001, 2 : 139-154.
  • 2Yu H, Han J, Chang K. PEBL: Positive examples based learning for Web page classification using SVM [C]//Proc of the 8th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2002: 239-248.
  • 3Li X, Liu B, Ng S. Learning to identify unexpected instances in the test set [C]//Proc of the 20th IJCAI. San Francisco: Morgan Kaufmann, 2007:2802-2807.
  • 4Sha C, Xu Z, Wang X, et al. Directly identify unexpected instances in the test set by entropy maximization [C]//Proc of APWEB/WAIM 2009. Berlin: SPringer, 2009: 659-664.
  • 5黎铭,周志华.基于多核集成的在线半监督学习方法[J].计算机研究与发展,2008,45(12):2060-2068. 被引量:12
  • 6Manning C D, Raghavan P, Schutze H. An Introduction to Information Retrieval [M]. Cambridge, Cambridge University Press, 2007: 117-119.
  • 7Maimon O, Rokach L. The Data Mining and Knowledge Discovery Handbook [M]. Berlin: Springer, 2005:853-867.
  • 8Gyorfi L, Gyorfi Z, Vajda I. Bayesian decision with rejection [J]. Problems of Control and Information Theory, 1979, 8 (5) : 445-452.
  • 9McCallum A, Nigam K. A comparison of event models for naive Bayes text classification [C]//Proc of AAAI-98 Workshop on Learning for Text Categorization. Menlo Park, CA: AAAI, 1998:41-48.
  • 10Landwehr N, Hall M, Frank E. Logistic model trees [C]// Proc of the 14th European Conf on Machine Learning. Berlin: Springer, 2003:241-252.

二级参考文献30

  • 1Scholkopf B, Herbrich R, Smola A J. A generalized representer theorem [C] //Proe of the 14th Annual Conf on Learning Theory. Berlin: Springer, 2001:416-426.
  • 2Blake C, Keogh E, Merz C J. UCI repository of machine learning databases [OL]. [2008-11-10]. http://www. ics. uci. edu/-mlearn/ MLRepository. html.
  • 3Bays D. UCI KDD archive [OL].[2008-11-10]. http:// kdd. ies. uci. edu/.
  • 4Crammer K, Dekel O, Shalev-Shwartz S, et al. Online passive-aggressive algorithms [C] //Thrun S, Saul L K, Scholkopf B, eds. Advances in Neural Information Processing Systems 16. Cambridge, MA: MIT Press, 2006.
  • 5Kivinen J, Smola A J, Williamson R C. Online learning with kernels [J]. IEEE Trans on Signal Processing, 2004, 52(8):2165-2176.
  • 6Herbster M, Pontil M. Prediction on a graph with a perceptron [C] //Scholkopf B, Platt J C, Hoffman T, eds. Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press, 2007:577-584.
  • 7Cheng L, Vishwanathan S V N, Schuurmans D, et al. Implicit online learning with kernels [C]//Scholkopf B, Platt J C, Hoffman T, eds. Advances in Neural Information Processing Systems 19. Cambridge, MA.. MIT Press, 2007 : 249-256.
  • 8McDonald R, Crammer K, Pereira F. Online large-margin training of dependency parsers [C] //Proc of the 43rd Annual Meeting of the Association for Computational Linguistics. Morristown, N J: ACL Press, 2005:91-98.
  • 9McDonald R. Discriminative sentence compression with soft syntactic constraints [C] //Proc of the llth Conf of the European Chapter of the Association for Computational Linguistics. Morristown, NJ: ACL Press, 2006:297-304.
  • 10Ciaramita M, Murdock V, Plachouras V. Online learning from click data for sponsored search [C] //Proc of the 17th Int Conf on World Wide Web. New York, NJ: ACM, 2008.. 227-236.

共引文献11

同被引文献99

  • 1贾自艳,何清,张海俊,李嘉佑,史忠植.一种基于动态进化模型的事件探测和追踪算法[J].计算机研究与发展,2004,41(7):1273-1280. 被引量:58
  • 2俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:157
  • 3宋丹,王卫东,陈英.基于改进向量空间模型的话题识别与跟踪[J].计算机技术与发展,2006,16(9):62-64. 被引量:23
  • 4Pan S J, Yang Q. A survey on transfer learning [J]. IEEE Trans on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
  • 5Vapnik V. An overview of statistical learning theory [J]. IEEE Trans on NeuraI Networks, 1999, 10(5): 988-999.
  • 6Shi Y, Lan Z, Liu W, et al. Extending semi-supervised learning methods for inductive transfer learning [C] //Proc of the 9th IEEE Int Conf on Data Mining. Los Alamitos: IEEE Computer Society, 2009:483-492.
  • 7Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
  • 8Dai W, Yang Q, Xue G, et al. Boosting for transfer learning [C] //Proc of the 24th Int Conf on Machine Learning. New York: ACM, 2007: 193-200.
  • 9Pan S J, Kwok J T, Yang Q. Transfer learning via dimensionality reduction [C] //Proc of AAAI. Menlo Park, CA: AAAI, 2008: 677-682.
  • 10Xie S, Fan W, Peng J, et al. Latent space domain transfer between high dimensional overlapping distributions [C] // Proc of the 18th Int Conf on World Wide Web. New York: ACM, 2009:91-100.

引证文献11

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部