期刊文献+

倾斜式生长ZnS纳米柱状薄膜及其透射性能的研究 被引量:2

Preparation and Transmissivity of ZnS Nanocolumn Thin Films with Glancing Angle Deposition Technology
下载PDF
导出
摘要 采用倾斜式生长的方法,在本底真空为3×10-4Pa,生长率为0.2 nm.s-1的条件下,通过改变衬底的法线方向与入射粒子流的夹角α,在ITO导电玻璃衬底上制备了ZnS纳米薄膜。在α=80°和85°时,样品的X射线衍射谱证实了不同倾斜角时所制备薄膜中均有纳米ZnS晶体形成,扫描电子显微镜(SEM)图像显示,所形成的薄膜均呈现出了柱状结构,并且倾斜角为85°时所得到的纳米柱直径大于80°时所得结果;在α=0°时,相应测量结果表明,虽然在不同衬底上也形成了纳米ZnS晶体薄膜,但并未见柱状结构,而是形成了一层均匀且致密的薄膜。对两种薄膜结构的生长动力学过程作了分析。ITO衬底上薄膜的透射光谱表明ZnS柱状薄膜能够提高可见光的透过率,因此对柱状ZnS纳米薄膜的研究将有利于提高电致发光器件的发光效率。 Nanocrystalline ZnS thin films were fabricated by glancing angle deposition (GLAD) technology in an electron beam evaporation system. Deposition was carried out in the custom vacuum chamber at a base pressure 3× 10 4 Pa, and the deposition rate was fixed at 0. 2 nm · s 1. ZnS films were deposited on pieces of indium tin oxide (ITO) substrates when the oblique angle of the substrate relative to the incoming molecular flux was set to 0°, 80° and 85° off the substrate normal respectively. X-ray diffraction (XRD) spectra and scanning electron microscope (SEM) images showed that ZnS nanocrystaltine films were formed on the substrates at different oblique angle, but the nanocolumn structure was only formed under the situation of a^80~ and 85~. The dynamics during the deposition process of the ZnS films at a=0~, 80~ and 85~ was analyzed. The transmitted spectra of ZnS thin films deposited on 1TO substrates showed that the ZnS nanocolumn thin films could enhance the transmissivity in visible range. The ZnS nanocolumn could be used into electroluminescence device, and it would enhance the luminous efficiency of the device.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第2期504-507,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(10774013,10804006,10974013,60978060) 教育部博士点基金项目(20070004024) 博士点新教师基金项目(20070004031) 北京市科技新星计划项目(2007A024) 国家杰出青年科学基金项目(60825407) 北京交通大学优秀博士生科技创新基金项目(141036522) 教育部留学回国科研启动基金项目 高等学校学科创新引智计划项目(B08002)资助
关键词 倾斜式生长 柱状ZnS纳米薄膜 透射光谱 Glancing angle deposition Nanocolumn ZnS thin film Transmitted spectrum
  • 相关文献

参考文献15

  • 1Tian B Z, Zheng X L, Kempa T J, et al. Nature, 2007, 449: 885.
  • 2Hayden O, Agarwal R, Lieber C M. Nature Materials, 2006, 5: 352.
  • 3Javey A, Nam S W, Friedman R S, et al. Nano Lett. , 2007, 7: 773.
  • 4Cui Y, Wei Q Q, Park H K, et al. Science, 2001, 293: 1289.
  • 5Zhang J, Salzmann I, Rogaschewski S, et al. Appl. Phys. Lett. , 2007, 90: 193117.
  • 6Zhao Y P, Ye D X, Wang G C, et al. Proc. SPIE, 2003, 5219: 59.
  • 7Sun XW, Huang J Z, WangJ X, et al. Nano Lett. , 2008, 8(4): 1219.
  • 8张福俊,徐征,黄金昭,王勇,孙波,裴娟.有机无机异质节中稀土配合物电致发光的研究[J].光谱学与光谱分析,2006,26(8):1403-1405. 被引量:6
  • 9Zhang F J, Xu Z, I.U Y G, et al. European Physical Journal B, 2006, 52.. 245.
  • 10Huang J Z, Xu Z, Zhao S L, et al, et al. Solid State Commun. , 2007, 142: 417.

二级参考文献15

  • 1阎志军,王印月,徐闰,蒋最敏.电子束蒸发制备HfO_2高k薄膜的结构特性[J].物理学报,2004,53(8):2771-2774. 被引量:18
  • 2沈自才,王英剑,范正修,邵建达.双源共蒸法制备非均匀膜的模型分析[J].物理学报,2005,54(1):295-301. 被引量:8
  • 3Robbie K and Brett M J 1997 J. Vac. Sci. Technol. A 15 1460.
  • 4RobbieK, Sit J C and Brett M J 1997 J. Vac. Sci. Technol. A16 1115.
  • 5Robbie K et al 1997 Electronics Letters 33 1213.
  • 6Ovidiu Toader and Sajeev John 2001 Science 292 1133.
  • 7Kennedy S R and Brett M J 2003 Applied Optics 42 4573.
  • 8van Popta A C, Sit J C and Brett M J 2004 Applied Optics 43 3632.
  • 9Tang C W, VanSlyke S A, Chen C H. J. Appl. Phys. , 1989, 65: 3610.
  • 10Weissman S I. J. Chem. Phys. , 1942, 10: 214.

共引文献14

同被引文献24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部