期刊文献+

一种基于即时学习的多模型在线建模方法 被引量:3

An Online Multiple-model Modeling Method Based on Lazy Learning
下载PDF
导出
摘要 针对复杂非线性系统的建模问题,基于空间划分树(SP-Tree)和即时学习(lazy learning)的思想,设计了一种多模型在线建模方法。该方法基于分解-合成策略,根据系统输入输出数据,采用即时学习算法建立当前时刻的最佳局部模型,随着系统工作点的移动,滚动建立系统的多个模型,实现对非线性系统的准确建模。在建立邻域的过程中,采用一种基于SP-Tree数据结构的数据库进行分层递阶搜索,有效地提高了在线建模的实时性。最后,通过对一个仿真案例的研究验证了该算法的有效性。 An online multiple-model modeling method based on spatial partition tree and lazy learning is suggested for complex nonlinear system. The new method establishes the optimum local model of the system based on lazy learning algorithm, which is on the basis of divide-and-conquer principle and input-output data. As working points changing, multiple local models were built to realize the exact modeling for the global system. To select local neigh- borhoods of the query points, a hierarchical searching strategy result, the real-time performance of the modeling is improved. proposed method. based on spatial partition tree is present, and as a Simulation results showed the effectiveness of the
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2010年第1期196-200,共5页 Journal of Sichuan University (Engineering Science Edition)
基金 航天科技创新基金(CASC0209) 总装武器装备预研基金资助项目(9140A04050407JB3201)
关键词 即时学习 非线性系统 在线多模型建模 空间划分树 k-vNN lazy learning nonlinear system online muhiple-model modeling spatial partition tree k vector nearest neighbors
  • 相关文献

参考文献11

  • 1Cheng C, Hashimoto Y, Chiu M S. Adaptive controller design using just-in-time learning algorithm [ C]//Proceedings of the 2004 IEEE International Conference on Control Application. 2004:1106 - 1111.
  • 2Bontempi G, Birattari M, Bersini H. Lazy learning for local modeling and control design [ J ]. International Journal of Control, 1999,72 (7-8) : 643 - 658.
  • 3Fan J, Gijbels I. Local polynomial modeling and its application [M]. London: Chapman & Hall,1997.
  • 4Ushida S,Kimura H. Just-in-time approach to nonlinear identification and control [ J ]. Journal of SICE, 2005,44 (2) :102 - 106.
  • 5潘天红,李少远,王昕.基于即时学习的非线性系统多模型建模方法[C].第二十四届中国控制会议论文集.广州:华南理工大学出版社,2005:268-273.
  • 6Zhang J P, et al. Intelligent selection of instances for prediction functions in Lazy learning algorithms [ J ]. Artificial Intelligence Review, 1997,11 (1/2) : 175 - 191.
  • 7Zheng Q B, Kimura H. Just-in-time modeling for function prediction and its application [ J ]. Asian Journal of Control, 2001,3( 1 ) :35 -44.
  • 8曾东海,米红,刘力丰.一种基于网格密度与空间划分树的聚类算法[J].系统工程理论与实践,2008,28(7):125-131. 被引量:15
  • 9Philippe C, Luc D, Carlos Z C. Analysis of range search for random k - d trees [ J]. Actalnformatics, 2001:355 - 383.
  • 10Takao K, Yamamoto T, Hinamoto T. A design of memory- based PID controllers [ J ]. Transactions of SICE, 2004,40 (9) :898 -905.

二级参考文献10

  • 1王建林,于涛,金翠云.On-line Estimation of Biomass in Fermentation Process Using Support Vector Machine[J].Chinese Journal of Chemical Engineering,2006,14(3):383-388. 被引量:15
  • 2张宝东,苑中显.一种协同式强化表面的换热特性[J].化工学报,2007,58(3):562-566. 被引量:2
  • 3Han J W, Micheline Kambr. Data Mining: Concepts and Techniques[M]. Morgan Kaufmann Publishers,2001.
  • 4Macqueen J. Some methods for classification and analysis of multivariate observations[J]. Proc 5th Berkeley Syrup Math Statist, 1967,1:281 - 297.
  • 5Martin Ester, Hans-Peter Kriegel, Sander J, Xu X W. A density-based algorithm for discovering clusters in large spatial databases with noise[J]. Proc of 2nd Int Conf on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, 1996.
  • 6Agrawal R, Gehrke J, Gunopulos D,et al.Automafic subspace clustering of high dimensional data for data mining applications[J]. ACM SIGMOD Int Conf:, USA, 1998: 94- 105.
  • 7Hoe Kap Aim, Nikos Mamoulis, Ho Min Wong. A Survey on Multidimensional Access Methods[R]. Research Report, Hong Kong University of Science and Technology Hong Kong, 1997.
  • 8Beckmann H-P. Kriegel, R.Schneider, B. Seeger. The R^* -Tree: An efficient and robust access method for points and rectangles [J]. Proc ACM SIGMOD, 1990:322 - 331.
  • 9Philippe C, Luc D, Carlos Z -C. Analysis of range search for random k-d trees[J]. Aeta Infonnatiea,2001,37:355 - 383.
  • 10刘毅,王海清,李平.局部最小二乘支持向量机回归在线建模方法及其在间歇过程的应用[J].化工学报,2007,58(11):2846-2851. 被引量:18

共引文献31

同被引文献34

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部