3Badrul Sarwar,George Karypis,Joseph Konstan,John Reidl. Item-Based Collaborative Filtering Recommendation Algorithms[J]. Proceedings of the tenth international conference on World Wide Web.2003:285-295.
1Schafer J B, Konstan J A and Riedl J. Recommender systems in E-Commerce[C]. In: ACM Conference on Electronic Commerce(EC99), 1999, 158-166.
2Breese J, Hecherman D and Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[C]. In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence(UAI-98), 1998, 43-52.
3Schafer J B, Konstan J A and Riedl J. E-Commerce recommendation applications [J]. Data Mining and Knowledge Discovery,2001, 5 (1-2): 115-153.
4Goldberg D, Nichols D, Oki B M and Terry D. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992,35(12):61-70.
5Resnick P, Iacovou N, Suchak M, Bergstrom P and Riedl J.Grouplens. an open architecture for collaborative filtering of netnews[C]. In: Proceedings of ACM CSCW' 94 Conference on Computer-Supported Cooperative Work, 1994,175-186.
6Shardanand U and Maes P. Social information filtering: algorithms for automating ''Word of Mouth'' [C]. In Proceedings of ACM CHI' 95 Conference on Human Factors in Computing Systems, 1995, 210-217.
7Hill W, Stead L, Rosenstein M and Furnas G. Recommending and evaluating choices in a virtual community of Use[C]. In:Proceedings of CHI' 95, 1995,194-201.
8Sarwar B, Karypis G, Konstan J and Riedl J. Item-based collaborative filtering recommendation algorithms[C]. In:Proceedings of the Tenth International World Wide Web Conference, 2001,285-295.
9Chickering D and Hecherman D. Efficient approximations for the marginal likelihood of bayesian networks with hidden variables[J]. Machine Learning, 1997, 29, 181-212.
10Dempster A, Laird N and Rubin D. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, 38(1): 1-38.