期刊文献+

基于Bayes分类算法和活动轮廓模型的新疆肝包虫CT图像分割方法 被引量:3

Liver Hydatid CT Image Segmentation Using Smoothed Bayesian Classification Method and Modified Parametric Active Contour Model
原文传递
导出
摘要 肝包虫病是新疆常见的寄生虫病,严重危及人类健康。目前,医院常采用CT影像技术对该病进行诊断。肝包虫CT图像有其特有的病理特征,图像的灰度分布存在不均匀性和边界模糊性,且不同的包虫囊肿类型,其CT图像表现各异。本文针对该病的CT影像特征,提出一种同时对肝脏及包虫病灶进行分割的迭代算法。在每一步迭代过程中,算法分为初始分割和优化分割两个步骤:首先,在CT切片图像中确定位于正常肝脏及包虫病灶区的种子点,根据种子点的位置,利用Gauss概率模型拟合不同区域的灰度分布,并结合Bayes分类算法对肝脏及病灶区同时进行初始分割;然后,利用基于先验形状力场的活动轮廓模型算法优化初始分割结果,从而获得精确的肝脏及病灶区的边界。为了验证该算法的有效性,将算法对不同病人的CT切片图像进行分割实验,并从主观和客观两个方面,将算法的分割结果与医师手动分割结果进行对比评估,结果表明,该算法能在分割肝脏的同时准确地提取包虫病灶区。 Liver hydatid is a common parasitic disease in Xinjiang and a big concern for peoplels health. At present, CT imaging analysis is always a method for diagnosising liver hydatid. The CT image of liver hydatid owns their characteristics, such as inconsistent gray distribution and fuzzy regional boundary. Meanwhile, the representations of CT images are also dissimilar among different types of liver hydatid cyst. Based on CT imaging features of this disease, an iterative approach for liver segmentation and hydatid lesion extraction is proposed in this paper. Each iteration consists of two main steps. Firstly, according to the user-defined pixel seeds in the liver and lesion which are defined by user, Gaussian probability model fitting is adopted to fit gray distribution in different regions and smoothed Bayesian classification is applied to obtain the initial segmentation results of liver and lesion. Secondly, the parametric active contour model using the priori shape force field is adopted to refine the initial segmentation and to get accurate boundaries of liver and lesion. The algorithm from subjective and objective aspects are evaluated on different patientsI CT slices. By comparing the algorithm of segmentation to the ground-truth manual segmentation. The proposed algorithm is shown to be effective in liver segmentation and hydatid lesion extraction.
出处 《科技导报》 CAS CSCD 北大核心 2010年第2期19-24,共6页 Science & Technology Review
基金 国家自然科学基金项目(30960097) 新疆维吾尔自治区科学技术厅新疆少数民族科技骨干人才特殊培养科研专项基金项目(200723104)
关键词 肝包虫病 CT图像分割 Bayes分类算法 活动轮廓模型 liver hydatid disease CT image segmentation bayesian classification active contour model
  • 相关文献

参考文献18

  • 1Kass M, Witkin A, Terzopolous D. Snakes: Active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321-331.
  • 2Lira S J, Jeong Y Y, Ho Y S. Segmentation of the liver using the deformable contour method on CT images[C]//Proceedings of SPIE Medical Imaging, Lecture Notes in Computer Science. Heidelberg: Springer Berlin, 2005, 3767: 570-581.
  • 3Zhou X, Kitagawaa T, Okuo K, et al. Construction of a probabilistic atlas for automated liver segmentation in non-contrast torso CT images[J]. International Journal of Computed Assisted Radiology and Surgery, 2005, 1281: 1169-1174.
  • 4Lamecker H, Lange T, Seebass M. Segmentation of the liver using a 3D statistical shape model[R]. ZIB-Report 04-09, 2004: 1-25.
  • 5Tsai D, Tanahashi N. Neural-network-based boundary detection of liverstructure in CT images for 3D visualization [C]//Proceedings of IEEE International Conference on Computational Intelligence, 1994, 6 (27): 3484-3489.
  • 6Koss J E, Newman F D, Johnson T K, et al. Abdominal organ segmentation using texture transforms and a hopfield neural network[J]. IEEE Transactions on Medical Imaging, 1999, 18(7): 640-648.
  • 7Lee C C, Chung P C, Tsai H M. Identifying multiple abdominal organs from CT image series using a multimodule contextual neural network and spatial fuzzy rules [J]. IEEE Transactions on Information TechnOlogy in Biomedicine, 2003, 7(3): 208-217.
  • 8Woodhouse C E, Ney D R, Sitzmann J V, et al. Spiral computed tomography arterial portography with three-dimensional volumetric rendering for oncologic planning: A retrospective analysis [J]. Investigative Radiology, 1994, 29(12): 1031-1037.
  • 9Shimizu A, Ohno R, Ikegami T, et al. Muhi-organ segmentation in three dimensional abdominal CT images [JJ. International Journal of Computer Assisted Radiology and Surgery, 2006, 1(7): 76-78.
  • 10Gao L, Heath D, Kuszyk B, etal. Automatic liver segmentation technique for 3D visualization of CT data[J]. Radiology, 1996, 201(2): 359-364.

二级参考文献8

  • 1L D Cohen.On active contour models and balloons[J].CVGIP:Image Understanding,1991,53(2):211-218
  • 2C Xu,J L Prince.Snakes,shapes,and gradient vector flow[J].IEEE Trans on Image Processing,1998,7(3):359-369
  • 3S C Zhu,A Yuille.Region competition:Unifying snakes,region growing,and Bayes/MDL for multiband image segmentation[J].IEEE PAMI,1996,18(9):884-900
  • 4T F Chan,L A Vese.Active contours without edges[J].IEEE Trans on Image Processing,2001,10(2):266-277
  • 5D Cremers,C Schnrr,J Weickert.Diffusion-snakes:Combining statistical shape knowledge and image information in a variational framework[C].The 1st IEEE Workshop on Variational and Level Set Methods,Vancouver,2001
  • 6A D Dempster,N M Laird,D B Rubin.Maximum likelihood from incomplete data via the EM algorithm[J].Journal Royal Statistical Society,Series B,1977,39(1):1-38
  • 7R F Chang,W J Wu,W K Moon,et al.Segmentation of breast tumor in three-dimensional ultrasound images using three-dimensional discrete active contour model[J].Ultrasound in Medical & Biology,2003,29(11):1571-1581
  • 8M Kass,A Witkin,D Terzopoulos.Snakes:Active contour models[J].International Journal of Computer Vision,1988,1(4):321-331

同被引文献35

  • 1刘兴龙,周萍,李训栋,王磊,童隆正.肝纤维化CT图像的频域特征分析[J].医疗设备信息,2004,19(10):7-9. 被引量:4
  • 2刘勍,马义德,钱志柏.一种基于交叉熵的改进型PCNN图像自动分割新方法[J].中国图象图形学报(A辑),2005,10(5):579-584. 被引量:58
  • 3孙瑛,覃家美,廖孟扬,汤瑞云,刘萍.利用图像纹理的频域特征参量对肝脏组织的分析[J].中国医学影像技术,1994,10(1):59-62. 被引量:2
  • 4赵峙江,张田文,张志宏.一种新的基于PCNN的图像自动分割算法研究[J].电子学报,2005,33(7):1342-1344. 被引量:21
  • 5Zhou X, Kitagawaa T, Okuo K, et al. Construction of a probabilistic atlas for automated liver segmentation in non-contrast torso CT images [J]. Int J Cornput Assist Radiol Surg, 2005, 1281:1169-1174.
  • 6Eckhom R, Reitboeck H J, A mdtetal M. Feature linking via synchronization among distributed assemblies sinulations of results from cat visual cortex[J]. Neu Comput, 1990, 2(3): 293-307.
  • 7Johnson J L, Ritter D. Observation of periodic waves in a pulsecoupled neural network[J]. Opt Lett, 1993, 18(15): 1253-1255.
  • 8Lindblad T, Kinser J M. Image processing using pulse-coupled neural networks[M]. Berlin, Heidelberg: Springer-Verlag, 2005.
  • 9Cover T M, Thomas J A. Elements of information theory [M]. New York: Wiley, 1991.
  • 10Gu X D, Guo S D, Yu D H. A new approach for image segmentation based on unit-linking PCNN [C]. Machine Learning and Cybernetics, Proceedings 2002 International Conference, 2002, 1(1): 175-178.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部