期刊文献+

路由器中基于支持向量机(SVM)的异常检测方法研究 被引量:1

Research on Abnormal Detecting Arithmetic Based on Support Vector Machine in Router
下载PDF
导出
摘要 支持向量机(SVM)是一类新型机器学习方法,首先简要介绍了SVM的基本原理,进而分析了该方法应用于异常检测,最后对基于支持向量机(SVM)的异常检测在路由器中的实现方法进行了简要论述和仿真实验。 Support vector machine(SVM) is a new learning method of machine,this paper introduces the basic theory of SVM,and also analyses this method applying to detect abnormal.At last,this paper puts forward a measure to implement in Router which based on SVM to detect abnormal.
作者 卢芬 张成新
出处 《计算机安全》 2010年第1期17-19,共3页 Network & Computer Security
关键词 网络安全 异常检测 支持向量机 security of network abnormal detecting support vector machine
  • 相关文献

参考文献2

二级参考文献12

  • 1李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53
  • 2[1]Forrest S, Perrelason AS, Allen L, Cherukur R. Self_Nonself discrimination in a computer. In: Rushby J, Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212.
  • 3[2]Ghosh AK, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior. In: Debar H, Wu SF, eds. Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000. 93~109.
  • 4[3]Lee W, Stolfo SJ. A data mining framework for building intrusion detection model. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132.
  • 5[4]Vapnik VN. The Nature of Statistical Learning Theory. New York: Spring-Verlag, 1995.
  • 6[5]Lee W, Dong X. Information-Theoretic measures for anomaly detection. In: Needham R, Abadi M, eds. Proceedings of the 2001 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 2001. 130~143.
  • 7[6]Warrender C, Forresr S, Pearlmutter B. Detecting intrusions using system calls: Alternative data models. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 133~145.
  • 8Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 9Burges C.A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery,1998,2(2):1-43.
  • 10Nello C,John S T.An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].Cambridge University Press,2000.

共引文献140

同被引文献4

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部