期刊文献+

图的循环定向 被引量:1

Cyclical orientations of graphs
原文传递
导出
摘要 Barot,Geiss和Zelevingsky曾经给出了一个图是否可定向的判断方法.该方法对图中所有圈上的边依次排序编号,然后考察不同的圈是否有不同的极大边,或者是计算顶点、边、圈和连通分支间的数量关系.本文给出另外一种判定方法.该方法主要通过观察顶点之间的链进行. Barot, Geiss and Zelevinsky gave a method to decide whether a given graph can be cyclically oriented. Their method is either to consider the linear order of the edges such that different chordless cycles have different maximal edges, or to check the number relation among the amount of vertices, edges, cycles and connected components. In this paper, another method is proposed to decide whether a given graph can be cyclically oriented. The method is to use the chains between two vertices.
作者 邹腾
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期21-26,共6页 Journal of Sichuan University(Natural Science Edition)
关键词 cluster代数 有限型 循环定向 cluster algebra, finite type, graph, cyclical orientation
  • 相关文献

参考文献6

  • 1Fomin S, Zelevinsky A. Cluster algebras I. foundations [J]. Amer Math Soc, 2002(2): 497.
  • 2Fomin S, Zelevinsky A. Double Bruhat cells and total positivity [J]. Amer Math Soc, 1999(12) : 335.
  • 3Lusztig G. Introduction to total positivity[C]//Posivity in Lie theory: open problems. Berlin.. de Gruyter, 1998.
  • 4Buan A B, Marsh R, Reineke M, Et A L. Tilting theory and cluster combinatorics [J]. Adv Math, 2004(1) : 1.
  • 5Marsh R, Reineke M, Zelevinsky A. Generallized assoeiahedra via quiver representation [J]. Tran Amer Math Soc, 2003(10) : 4171.
  • 6Barot M, Geiss C, Zelevinsky A. Cluster algebras of finite type and positive symmetrizable matrices [J]. London Math Soc, 2006(3) : 545.

同被引文献11

  • 1Fomin S, Zelevinsky A. Cluster algebra I : Foundations [J]. J Amer Math Soe, 2002, 15,(2): 497.
  • 2Fomin S, Zelevinsky A. Cluster algebra Ⅱ : Finitetype classification [J]. Invent Math, 2003, 154: 63.
  • 3Buan A, Marsh R, Reineke M. Tilting theory and cluster combinatorics [J]. Adv Math, 2006, 204: 572.
  • 4Buan A, Marsh R. Cluster-tilting theory [C] // Peria J I, Bautista R. Trends in Representation Theory of Algebras and Related Topics. Providence, RI:Amer Math Soc, 2006.1.
  • 5Rieten I. Tilting theory and cluster algebras [J]. Preprint,.
  • 6RingeI M C. Some remarks concerning tilting mod-ules and tilted algebras. Origin. Relevance. Future. An appendix to the Handbook of tilting theory,edited by Lidia Angeleri-Hugel, Dieter Happel and Henning Krause [ M ]. Cambridge: Cambridge University Press, 2007.
  • 7Keller B. Triangulated orbit categories [J]. Documenta Math, 2005, 10: 551.
  • 8Barot M, Kussin D, Lenzing H. The grothendieck group of a cluster category[J]. J Pure Applied Algebra, 2008, 212: 33.
  • 9Hanppel D. Triangulated categories in the representation theory of finite dimensional algebras IMP. Cambridge: Cambridge University Press, 1988.
  • 10Xiao J, Zhu B. Relations for the grothendieck groups of triangulated category [J]. J Algebra, 2002, 257: 37.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部