期刊文献+

线性FS格上的线性投射空间 被引量:2

Linear projective spces of linear FS-lattices
原文传递
导出
摘要 作者研究了线性FS格上的线性投射空间的性质,证明了:线性FS格的子类完全分配格具有连续的线性投射空间当且仅当它的线性投射空间同构于幂集格. In this paper, the properties of linear projective spaces on linear FS-lattices is studied. Moreover, as a subclass of linear FS-lattices, it is proved that the linear projective space on a completely distributive lattice is continuous if and only if it is isomorphic to a powerset lattice.
作者 黄玉杰 寇辉
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期27-30,共4页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金"973"项目(2002CB312206)
关键词 线性FS格 完全分配格 线性投射空间 linear FS-lattice, completely distributive lattice, linear projective space
  • 相关文献

参考文献7

  • 1Hofmann K H, Mislove M W. The lattice of kernel operators and topological algebra[J]. Mathematische Zeitschrift, 1997, 154: 175.
  • 2Huth M. Cartesian closed categories of domains and space Proj(D), Lecture notes in computer science 598 [M]. Berlin/New York: Springer-Verlag, 1991.
  • 3寇辉,刘应明.Domain投射空间的连续性[J].数学年刊(A辑),2000,1(5):579-584. 被引量:1
  • 4Huth M, Jung A, Keimel K. Linear types and approximation[J]. Math Struct in Comp Science, 2000, 10.. 719.
  • 5Huth M, Jung A, Keimel K. Linear types,approximation and topology[M]. USA: IEEE Computer Society Press, 1994.
  • 6Gierz G, Hoffmann K H, Keimel K, et al. Comtinuous lattices and domains[M]. Cambridge: Cambridge University press, 2003.
  • 7He W, Luo M K. Lattices of quotients of completely distributive lattices[J]. Algebra Universalis, 2005, 54(1) : 121.

二级参考文献1

  • 1Liu Yingming,Topology Its Application,1996年,69卷,153页

同被引文献38

  • 1Scott D. Outline of a mathematical theory of compu- tation[J]. 4th Annual Princeton Conference on Infor- mation Sciences and Systems, 1970: 169.
  • 2Scott D, Data types as lattices[J]. SIAM J. Compu- ting, 1976, 5: 522.
  • 3Scott D S. Domains for denotational semantics[C] // Nielson M, Schmidt E M. Internat. Colloq. on Au- tomata, Languages and Programs, Lecture Notes in Computer Science, Vol. 140, Berlin: Springer, 1982.
  • 4Abramsky S, Jung A. Domain theory[C]// Abram- sky S, et al. Handbook of Logic in Computer Sci- ence. Oxford: Oxford University Press, 1994.
  • 5Chen Y, Jung A. A logical approach to stable do- mains[J]. Theoretical Computer Science, 2006, 368: 124.
  • 6Gierz G, Lawson J D. Generalized continuous and hypereontinuous lattices [J]. The Rocky Mountain Journal of Mathematics, 1981, 11: 271.
  • 7Heckmann R. An upper power domain construction in terms of strongly compact sets[J]. Berlin/New York : Springer-Verlag, 1991.
  • 8Jung A. Cartesian closed categories of domains[M]. Amsterdam: CWI Tracts, 1989.
  • 9Lawson J. The duality of continuous posets[J]. Houston J Math,1979, 5: 357.
  • 10Lawson J. Spaces of maximal points[J]. Math Struet In Comp Sei, 1997, 7: 543.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部