摘要
应用复合二元颗粒材料的空间平均电场〈E>、平均电位移〈D〉之间的关系及复合介质的非线性光学性质,表示出复合介质的有效介质函数ε_e=F(ε_1,ε_2,f_1).假设在线性极限下第i组份的ε_i(i=1,2)为常数时,应用微扰理论,导出了复合介质的非线性有效极化率χ_e,该结果与MG近似理论和EMA近似理论比较应用范围更广.用该理论对Cu纳米颗粒嵌入(SiO_2)基质中组成Cu-SiO_2薄膜进行相应分析,其结果与Hamanaka的实验结果相吻合.
In this paper, by means of the nonlinear relation between average electric field (E) and average electric displacement (D) and of the nonlinear optical properties, the dielectric function er=F(ε1,ε2,f1) of binary-composites material is given. In the case that the imaginary εi(i=1,2) of ith component is constant, the expressions of effective nonlinear susceptibilities are derived from perturbation theory. The results offer a rather general formulation of the problem, and show that this enhancement exists in a wide variety of cases than those obtained from MG approximation theory and EMA theory. As an ex- ample, the theoretical analyze using the above general formulation in Grain Films with Cu embed(SiO2) matrix is carried out. It is found that the theoretical result is consistent with the Hamanaka's s experimental result.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第1期109-114,共6页
Journal of Sichuan University(Natural Science Edition)
基金
重庆市教委科学技术研究项目[KJ081307]
长江师范学院理论物理重点扶持学科建设基金资助[2007-80]
关键词
金属颗粒材料
金属绝缘复合介质
有效介质近似
非线性极化率
metal particle matter, metal-insulator composites media, effective-medium approximation,nonlinear susceptibilities