期刊文献+

光合菌群利用丁酸产氢的初步研究 被引量:1

Preliminary study on hydrogen production from butyrate by photosynthetic bacteria group
原文传递
导出
摘要 对影响光合菌群利用丁酸产氢的主要因子:初始细胞浓度、温度、初始pH值、光照强度和丁酸浓度进行了研究.结果表明,光合菌群在初始细胞浓度0.2~0.3 g/L,温度30~40℃,pH 6.0~9.0,光照强度2000~8000 Lx,丁酸浓度6~30 mmol/L的范围内均可以保持较高的产氢效率.当初始细胞浓度为0.3 g/L、温度30℃、初始pH 7.0、光照强度为4000 Lx、丁酸浓度为30 mmol/L时该光合菌群具有最大产氢量364 mL,最大产氢效率5.4 mol-H_2/mol-丁酸和最大产氢速率22.2 mL/L/h. The factors affecting hydrogen production from butyrate by photosynthetic bacteria group, such as initial ceil concentration, temperature, initial pH value, light intensity and butyrate concentra- tion were investigated. The results showed that photosynthetic bacteria group maintained high produc- tion efficiency when initial cell concentration was between 0.2 and 0.3 g/L, temperature was 30-40 ℃, initial pH value was in the range of 6.0- 9.0, light intensity was 2000-8000 Lx and initial butyrate concentration was 6-30 mmol/L. The maximum cumulative hydrogen production quantity of 364 mL, maximum hydrogen yield of 5.4 mol-H2/mol-butyrate, maximum hydrogen production rate of 22.2 mL/ L/h were obtained when initial cell concentration, temperature , initial pH value, light intensity and butyrate concentration were 0.3 g/L, 30 ℃, 7.0, 4000 Lx ond 30 mmol/L, respectively.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期179-184,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家863计划项目(2006AA05Z103)
关键词 光合产氢 光合菌群 丁酸 hydrogen photoproduction, photosynthetic bacteria group, butyrate
  • 相关文献

参考文献22

  • 1王亚楠,傅秀梅,刘海燕,管华诗,王长云.生物制氢最新研究进展与发展趋势[J].应用与环境生物学报,2007,13(6):895-900. 被引量:29
  • 2Kotay S M, Das D. Biohydrogen as a renewable energy resource-Prospects and potentials[J]. Int J Hydrogen Energy, 2008, 33: 258.
  • 3Evvyernie D, Morimoto K, Karita S, et al. Conversion of chitinous waste to hydrogen gas by Clostridium paraputrificum M-21[J]. J Biosci Bioeng, 2001, 91 : 339.
  • 4Wang C C, Chang C W, Chu C P, et al. Producing hydrogen from wastewater sludge by Clostridum bifermentans[J]. J Bioteehnol, 2003, 102: 83.
  • 5Nakashimada Y, Rachman M A, Kakizono T, et al. Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states [J]. Int J Hydrogen Energy, 2002, 27: 1399.
  • 6Federov A S, Tsygankov A A, Rao K K, et al. Hydrogen photoproduction by Rhodobacter sphaeroides immobilized on polyurethane foam [J]. Bioteehnol Lett, 1998, 20: 1007.
  • 7Chen C Y, Lu W B. Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates [J]. Bioresour Technol, 2008, 99: 3609.
  • 8崔双科,郭战英,于翔.优势光合细菌处理炼焦废水的研究[J].四川大学学报(自然科学版),2005,42(5):1001-1004. 被引量:6
  • 9Nath K, Muthukumar M, Kumar A, et al. Kinetics of two-stage fermentation process for the production of hydrogen[J]. Int J Hydrogen Energy, 2008, 33: 1195.
  • 10Mao X Y, Miyake J, Kawamura S. Screening photosynthetic bacteria for hydrogen production from organic acids[J]. J Ferment Technol, 1986, 64(3): 245.

二级参考文献16

共引文献33

同被引文献26

  • 1刘敏,陈滢,任南琪.利用不同类型种泥启动生物制氢反应器的试验研究[J].四川大学学报(工程科学版),2009,41(1):86-90. 被引量:2
  • 2Muthukumar M, Nath K, hydrogen production under H2 by Enterobacter cloacae 28: 831. Das D. Improvement of hiodecreased partial pressure of [J]. Biotechnol Lett, 2006,.
  • 3Yokoi H, Maki R, Hirose J, et al. Microbial production of hydrogen from starch-manufacturing wastes [J]. Biomass and Bioenergy, 2002, 22: a80.
  • 4Segers L, Verstraete W. Conversion of organic acids to H2 by Rhodospirillaceae grown with glutamate or dinitro- gen as nitrogen sourceI[J]. Biotechnol Bioeng, 1983, 25 : 2843.
  • 5ChenC Y, Lu W B, WuJ F, etal. Enhancing phototrophic hydrogen production of Rhodobacter sphae- roides via statistical experimental design[J]. Int J Hydrogen Erlergy, 2007, 32 (8): 940.
  • 6Argun H, Kargi F, Kapdan I K. Light fermentation of dark fermentation effluent for bio-hydrogen production by different Rhodobacter species at different initial volatile fatty acid (VFA) concentrations [J]. Int J Hydrogen Energy, 2008, 33: 7405.
  • 7Yokoi H, Saitsu A, Uchida H, et al. Microbial hydrogen production from sweet potato starch residue [J]. J Biosci Bioeng, 2001, 91(1) : 58.
  • 8Chen C Y, Yang M H, Yeh K L, et al. Biohydrogen production using sequential two-stage dark and photo fermentation processes [J]. Int J Hydrogen Energy, 2008, 33: 4755.
  • 9Su H B, Cheng J, Zhou J H, et al. Improving hydrogen production from cassava starch by combination of dark and photo fermentation[J]. Int J Hydrogen Energy, 2009, 3:1780.
  • 10Liu H, Zhang T, Fang H H P. Thermophilic Hz production from cellulose containing wastewater [J]. Biotechnol Lett, 200a, 25: 365.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部