期刊文献+

大气可吸入颗粒物中多环芳烃的健康风险预测模型 被引量:4

Predictive Modeling on the Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in PM_(10)
原文传递
导出
摘要 通过对河北省40个采样点的大气可吸入颗粒物(PM10)中16种多环芳烃(PAHs)污染物的环境浓度以及其所致的苯并(a)芘等效毒性(BEQ)进行分析,发现大气可吸入颗粒物中PAHs污染物随季节变换而发生变化,且在低温冬季时,各PAHs环境浓度和所致BEQ均高于其他季节;日常仅监测苯并(a)芘(BaP),苯并(k)荧蒽(BkF)和稠二萘(CHR)的环境浓度,即可对大气可吸入颗粒物中PAHs污染物所致BEQ带来的健康风险进行评价,缩减了日常监测的工作量和运算过程,提高了效率. 16 polycyclic aromatic hydrocarbons (PAHs) in PM10 (the particulate matter(≤10μm) gathering from 40 sample points in Hebei province were determined by GC/MS. Through the analysis of the concentration and benzo(a) pyrene equivalent toxicity (BEQ) of the PAHs pollutions, we concluded that the distribution characters of PAHs in four seasons were different from each other, and the concentrations of PAHs and BEQ in winter all were quite more than those of the others probably because of the rela- tively low temperature and the heating system. In addition, we create a predictive modeling by factor mathematic method using three factors such as benzo(a) pyrene (BaP),benzo(k) fluorathene (BkF) and chrysene (CHR). This modeling could greatly reduce the workload of routine monitor and the arithmetic process, leading to the efficient prediction.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2010年第1期54-58,共5页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(40332015) 河北省自然科学基金(D2007001026)资助项目 河北省科学技术研究与发展计划项目(06276715 06649125D 06276715)
关键词 可吸入颗粒物 多环芳烃 健康风险 因子分析 预测模型 PM10 (the particulate matter(≤10μm) polycyclic aromatic hydrocarbons risk assessment factor analysis predictive modeling
  • 相关文献

参考文献14

二级参考文献105

共引文献150

同被引文献79

引证文献4

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部