期刊文献+

二阶流体通过径向延伸平面时滑移、黏性耗散、焦耳热对MHD流动的影响 被引量:4

Effects of Slip,Viscous Dissipation and Joule Heating on the MHD Flow and Heat Transfer of a Second Grade Fluid Past a Radially Stretching Sheet
下载PDF
导出
摘要 研究了二阶导电的非Newton流体,在一个可径向放射状延伸,并伴有部分滑动表面上的流动及其热交换.部分滑移用一个无量纲的滑移因子控制,其取值范围从0(全黏着)到无穷大(全滑移).使用适当的相似变换,把待求的非线性偏微分方程转化为常微分方程.讨论了边界条件的不足,在无需增加任何边界条件下,使用有效的数值格式,求解所得到的微分方程.部分滑移、磁场交互参数以及二阶流体的参数对速度场和温度场的综合分析发现,滑移量的增加,流体的动力边界层和热边界层增厚.因为当滑移量的增加,允许更多的流体通过该平面,表面摩擦因数的数值下降,并在更高的滑移参数下,摩擦因数趋于0,即流体无黏性地通过.还研究了磁场对速度场和温度场的重要影响. The flow and heat transfer of an electrically conducting non-Newtonian second grade fluid due to an radially stretching surface with partial slip was considered. The partial slip was controlled by a dimensionless slip factor, which varied between zero( total adhesion) and infinity (full slip). Suitable similarity transformations were used to reduce the resulting highly nonlinear partial differential equations into ordinary differential equations. The issue of paucity of boundary conditions was addressed and an effective numerical scheme was adopted to solve the obtained differential equations even without augmenting any extra boundary conditions. The important findings in this communication are the combined effects of the partial slip, magnetic interaction parameter and the second grade fluid parameter on the velocity and temperature fields. It is interesting to fred that the slip increases the momentum and thermal boundary layer thickness. As slip increases in magnitude, permitting more fluid to slip past the sheet, the skin friction coefficient decreases in magnitude and approaches zero for higher values of the slip parameter, i.e. the fluid behaves as though it were inviscid. The presence of magnetic field has also substantial effects on velocity and temperature fields.
作者 B·萨胡
出处 《应用数学和力学》 CSCD 北大核心 2010年第2期150-162,共13页 Applied Mathematics and Mechanics
关键词 二阶流体 可延伸平面 部分滑移 热传导 有限差分法 Broyden法 second grade fluid stretching sheet partial slip heat transfer finite difference method Broyden method
  • 相关文献

参考文献2

二级参考文献38

  • 1Sakiadis B C. Boundary layer behavior on continuous solid surface:the boundary layer on a continuous flat surface[J] .American Institute of Chemical Enaineers Journal.1961,7:221-224.
  • 2Crane L J. Flow past a stretching sheet[J] .Journal of Applied Mathematics and Physics, ZAMP , 1970,21: 545-547.
  • 3Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[J]. Canadian Journal Chemical Engineering, 1977,55:744-746.
  • 4Rivlin R S, Ericksen J L. Stress deformation relations for isotropic materials[J].Journal of Rational Mechanics and Analysis,1955,4:323-425.
  • 5Dunn J E, Fosdick R L. Thermodynamics, stability and boundedness of Fluids of complexity 2 and fluids of second grade[J]. Archive for Rational Mechanics and Analysis, 1974,56:191-252.
  • 6Dunn J E,Rajagopal K R. Fluids of differential type, critical review and thermodynamic analysis [J]. International Journal of Engineering Science, 1995,33:589-729.
  • 7Fosdick R L, Rajagopal K R. Anomalous feature in the model of “second order fluids”[J].Archive for Rational Mechanics and Ana/ys/s,1979,70:145-152.
  • 8Galdi G P, Padula M, Rajagopal K R. On the conditional stability of the rest state of a fluid of second grade in unbounded domains[J]. Archive for Rational Mechanics and Analysis,1990,109:173-182.
  • 9Fox V G, Ericksen L E, Fan L T. The laminar boundary layer on a moving continuous flat sheet immersed in a non-Newtonian fluid[J].American Institute of Chemical Journal,1969,15:327-333.
  • 10Raigopal K R, Na T Y, Gupta A S. Flow of a viscoelastic fluid over a stretching sheet[J]. Rheological Acta, 1984,24:213-215.

共引文献3

同被引文献36

  • 1Eringen A C. Theory of micropolar fluids [ J]. J Math, 1966, 16 ( 1 ) : 1-18.
  • 2Gorla R S R, Mansour M A, Mohanunedien A A. Combined convection in an axisymmetric stagnation flow of micropolar fluid [J]. Int J Num Meth Heat Fluid Flow, 1996, 6 (4) : 47-55.
  • 3Gorla R S R, Takhar H S. Boundary layer flow of micropolar fluid on rotating axisymmetric surfaces with a concentrated heat source[ J]. Acta Mechanica, 1994, 10S ( 1/4 ) :1- 10.
  • 4Guram G S, Smith A C. Stagnation flows of micropolar fluids with strong and weak interactions[J]. Compu Math Appl, 1980, 6(2) : 213-233.
  • 5Kumari M, Nath G. Unsteady incompressible boundary layer flow of a micropolar fluid at a stagnation point[J]. Int JEng Sci, 1984, 22(16) : 755-768.
  • 6Abdullah I, Amin N. A micropolar fluid model of blood flow through a tapered artery with a stenosis[J]. Mathematical Methods in the Applied Sciences, 2010, 33(16) : 1910-1923. doi: 10. 1002/mma. 1303.
  • 7Seddeek M A. Flow of a magneto-micropolar fluid past a continuously moving plate[J]. Phy Lett A, 2003, 306 (4) : 255-257.
  • 8Nazar R, Amin N, Filip D, Pop I. Stagnation point flow of a micropolar fluid towards a stretching sheet [J ]. Int J Non-Linear Mech, 2004, 39 ( 7 ) : 1227-1235.
  • 9Takhar H S, Bhargava R, Agrawal R S, Balaji A V S. Finite element solution of a micropolar fluid flow and heat transfer between two porous discs [ J]. Int J Eng Sci, 2000, 38 ( 17 ) : 1907- 1922.
  • 10Abo-Eldahab E M, Ghonaim A F. Radiation effects on heat transfer of a micropolar fluid through a porous medium[J]. Appl Math Comp, 2005, 169( 1 ) :500-510.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部