期刊文献+

以代数方法探讨结构系统再设计问题

Dynamic Analysis of Redesigned Systems Using an Algebraic Method
下载PDF
导出
摘要 利用矩阵修改理论探讨结构系统再设计问题,以等惯性转换求解动态劲度矩阵的隐根,并导出将特征值定位的计算方法;继而在隐根为已知下探讨隐向量的特质及解法,并确认修改后结构的振型必须区分成驻留性与非驻留性自然频率等两种状况处理. By matrix modification, the redesign of a structural system was investigated. The inertia congruence transformation was adopted to find the latent roots of a dynamic stiffness matrix, and a method for determining its eigenvalue was proposed. The characteristics of the latent vector for a known latent root, and a method for computing it, were studied. The mode shapes of a redesigned structure must be handled differently based on whether the structure exhibits are persistent or non-persistent natural frequencies.
出处 《应用数学和力学》 CSCD 北大核心 2010年第2期171-179,共9页 Applied Mathematics and Mechanics
关键词 等惯性转换 隐根 隐向量 对角主元排列 congruence transformation latent root latent vector diagonal pivoting
  • 相关文献

参考文献20

  • 1Pomazal R J. The effect of local modification on the eigenvalues and eigenvectors of damped linear systems [ D ]. PhD Dissertation. Michigan: Michigan Technology University, 1969.
  • 2Pomazal R J. Local modification of damped linear systems[J]. AIAA Journal, 1971, 9( 11 ) : 2215-2221.
  • 3Hallquist J O. An efficient method for determining the effects of mass modifications in damped linear systems [ J]. Journal of Sound and Vibration, 1974, 44 (3) : 449-459.
  • 4Chou C M. Structural dynamics modification of 3D beam elements using a local eigenvalue modification procedure[D]. PhD Dissertation. Massachusetts: University of Lowell, 1984.
  • 5Aronszajn N, Weinstein A. On the unified theory of eigenvalues of plates and membranes[J]. Amer J Math, 1945,64( 1 ) : 523-545.
  • 6Beattie C, Fox D W. Schur complements and Weinstein-Aronszajn theory for modified matrix eigenvalue problem [ J ]. Linear Algebra and Its Applications, 1988,108 : 37-51.
  • 7Arbenz P, Golub G H. On the spectral decomposition of the Hermitian matrices modified by low rank perturbations with applications[J]. SIAM Journal of Mat Anal and Appl, 1988, 9(1) : 40-58.
  • 8Liao J Y, Tse C C. An algebra approach for the modal analysis of synthesized structures[ J]. Mechanical System and Signal Processing, 1993,7( 1 ) : 89-104.
  • 9Avitabile P. Twenty years of structural synamic modification--a review [ J ]. Sound and Vibration, 2003,37 : 14-27.
  • 10Lancaster P. Model-updating for self-adjoint quadratic eigenvalue problem [ J ]. Linear Algebra and Its Applications, 2008, 428 ( 11/12) : 2778-2790.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部