期刊文献+

Exact Solution of D-Dimensional Klein-Gordon Oscillator with Minimal Length

Exact Solution of D-Dimensional Klein-Gordon Oscillator with Minimal Length
下载PDF
导出
摘要 Specific modifications of the usual canonical commutation relations between position and momentumoperators have been proposed in the literature in order to implement the idea of the existence of a minimal observablelength. Here, we study a consequence of this proposal in relativistic quantum mechanics by solving in the momentumspace representation the Klein-Gordon oscillator in arbitrary dimensions. The exact bound states spectrum and thecorresponding momentum space wave function are obtained. Following Chang et al. (Phys. Rev. D 65 (2002) 125027),we discuss constraint that can be placed on the minimal length by measuring the energy levels of an electron in a penningtrap.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第2期231-236,共6页 理论物理通讯(英文版)
关键词 Klein-Gordon oscillator minimal length energy spectrum Klein 最小长度 振荡器 精确解 相对论量子力学 动量空间 能量水平 长度测量
  • 相关文献

参考文献35

  • 1A. Kempf, J. Math. Phys. 35 (1994) 4483.
  • 2A. Kempf, G. Mangano, and R.B. Mann, Phys. Rev. D 52 (1995) 1108.
  • 3A. Kempf, J. Phys. A 30 (1997) 2093.
  • 4H. Hinrichsen and A. Kempf, J. Math. Phys. 37 (1996) 2121.
  • 5L.N. Chang, D. Minic, N. Okamura, and T. Takeuchi, Phys. Rev. D 65 (2002) 125027.
  • 6T.V. Fitio, I.O. Vacarchuk, and V.M. Tkachuk, J. Phys. A 39 (2006) 2143.
  • 7F. Brau, J. Phys. A 32 (1999) 7691.
  • 8R. Akhoury and Y.P. Yao, Phys. Lett. B 572 (2003) 37.
  • 9S. Benczik, L.N. Chang, D. Minic, and T. Takeuchi, Phys Rev. A 72 (2002) 012104.
  • 10L.N. Chang, D. Minic, N. Okamura, and T. Takeuchi, Phys. Rev. D 65 (2002) 125028.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部