期刊文献+

Solving Dirac Equation with New Ring-Shaped Non-Spherical Harmonic Oscillator Potential 被引量:2

Solving Dirac Equation with New Ring-Shaped Non-Spherical Harmonic Oscillator Potential
下载PDF
导出
摘要 A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equation and radial equation are obtained through the variable separation method. The results indicate that the normalized angle wave function can be expressed with the generalized associated-Legendre polynomial, and the normalized radial wave function can be expressed with confluent hypergeometric function. And then the precise energy spectrum equations are obtained. The ground state and several low excited states of the system are solved. And those results are compared with the non-relativistic effect energy level in Phys. Lett. A 340 (2005) 94. The positive energy states of system are discussed and the conclusions are made properly.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第2期242-246,共5页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No. 60806047 the Basic Research of Chongqing Education Committee under Grant No. KJ060813
关键词 ring-shaped non-harmonic oscillator potential Dirac equation bound state generalizedassoeiated-Legendre function Dirac方程 非球谐振子势 径向波函数 环形 求解 狄拉克方程 分离变量法 多项式表示
  • 相关文献

参考文献29

  • 1R.C. Wang and C.Y. Wang, Phys. Rev. D 38 (1988) 348.
  • 2F. Dominguez-Adame, Phys. Left. A 136 (1989) 175.
  • 3B. Talukdar, A. Yunus, and M.R. Amin, Phys. Lett. A 141 (1989) 326.
  • 4J.Y. Guo, J. Meng, and F.X. Xu, Chin. Phys. Lett. 20 (2003) 602.
  • 5M. Simsek and H. Egrifes, J. Phys. A 37 (2004) 4379.
  • 6F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251 (1995) 267.
  • 7Z.Y. Li and J.Y. Guo, J. At. Mol. Phys. 25 (2008) 231.
  • 8C.Y. Chen, Phys. Lett. A 339 (2005) 283.
  • 9C.Y. Chen, C.L. Liu, and D.S. Sun, Phys. Lett. A 305 (2002) 341.
  • 10S. Flugge, Practical Quantum Mechanics, Springer Press, Berlin (1974).

同被引文献12

  • 1胡先权,王帮美,崔立鹏.新环状非球谐振子势的Dirac方程束缚态解[J].原子与分子物理学报,2009,26(3):429-434. 被引量:4
  • 2陆法林,庄国策,陈昌远.双环形Coulomb势Schrdinger方程束缚态的精确解(英文)[J].原子与分子物理学报,2006,23(3):493-498. 被引量:2
  • 3Chang-Yuan Chen,Yuan You,Xiao-Hua Wang,Shi-Hai Dong.Exact solutions of the Schr?dinger equation with double ring-shaped oscillator[J].Physics Letters A (-).2013(23-24)
  • 4Jian-You Guo,Jian-Chao Han,Ruo-Dong Wang.Pseudospin symmetry and the relativistic ring-shaped non-spherical harmonic oscillator[J].Physics Letters A.2006(5)
  • 5Chang-Yuan Chen,Shi-Hai Dong.Exactly complete solutions of the Coulomb potential plus a new ring-shaped potential[J].Physics Letters A.2005(5)
  • 6Chang-Yuan Chen.Exact solutions of the Dirac equation with scalar and vector Hartmann potentials[J].Physics Letters A.2005(3)
  • 7Shi-Hai Dong,Guo-Hua Sun,M. Lozada-Cassou.An algebraic approach to the ring-shaped non-spherical oscillator[J].Physics Letters A.2004(4)
  • 8Chang-Yuan Chen,Cheng-Lin Liu,Dong-Sheng Sun.The normalized wavefunctions of the Hartmann potential and explicit expressions for their radial average values[J].Physics Letters A.2002(6)
  • 9Hermann Hartmann.Die Bewegung eines K?rpers in einem ringf?rmigen Potentialfeld[J].Theoretica Chimica Acta (-).1972(2-3)
  • 10王帮美,胡先权.非球谐环形振子势的Schrdinger方程的解析解[J].重庆师范大学学报(自然科学版),2008,25(2):62-66. 被引量:5

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部