期刊文献+

立方体的线图的限制性连通度(英文) 被引量:1

Restricted Connectivity of the Line Graph of Hypercube
下载PDF
导出
摘要 子集SE(G)称为是图G的4-限制性边割,如果G-S不连通且每个连通分支至少有4个点.图G中基数最小的4-限制性边割称为4-限制性边连通度,记为λ4(G).本文确定了λ4(Qn)=4n-8.类似的,子集FV(G)称为图G的Rg-限制性点割,如果G-F不连通且每个连通分支的最小度不小于g.基数最小的Rg-限制性点割称为图G的Rg-限制性点连通度,记为κg(G).本文确定了κ1(L(Qn))=3n-4,κ2(L(Qn))=4n-8,其中L(Qn)是立方体的线图. A subset S belong to E(G) is called a 4-restricted-edge-cut of G, if G - S is disconnected and every component contains at least 4 vertices. The minimum cardinality over all 4-restricted-edge-cut of G is called the 4-restricted-edge connectivity of G, denoted by λ4(G). In this paper, we prove that λ4(Qn) = 4n - 8. Similarly, a subset F belong to V(G) is called a R^g-vertex cut of G, if G- F is disconnected and each vertex u ∈ V(G)- F has at least g neighbors in G- F. The minimum cardinality of all R^g-vertex-cut is called the R^g-vertex connectivity of G, denoted by k^g(G). In this paper, we prove that k^1(L(Qn)) = 3n- 4, k^2(L(Qn))=4n-8, where L(Qn) is the line graph of Qn.
出处 《新疆大学学报(自然科学版)》 CAS 2010年第1期23-26,共4页 Journal of Xinjiang University(Natural Science Edition)
基金 The research is supported by NSFC(No.10671165)
关键词 线图 立方体 限制性点连通度 限制性边连通度 line graph hypercube restricted-edge-cut restricted-edge-connectivity
  • 相关文献

参考文献1

二级参考文献8

  • 1Bondy J A,Murty U S R.Graph Theory with Applications[M].New York:Elsevier,1976.
  • 2Esfahanian A H,Hakimi S L.On computer a conditional edge connectivity of graph[J].Information Processing Letters,1988,27(4):195-199.
  • 3Esfahanian A H.Generalized measures of fault tolerance with applications to N-cube networks[J].IEEE Transactions on Computers,1989,38 (11):1 586-1 591.
  • 4Harary F.Conditional connectivity[J].Networks,1983,13:346-357.
  • 5Latifi S,Hegde M,Naraghi-Pour M.Conditional connectivity measures for large multiprocessor systems[J].IEEE Transactions on Computers,1994,43(2):218-221.
  • 6Fàbrega J,Fiol M A.Extraconnectivity of graphs with large girth[J].Discrete Math.,1994,127:163-170.
  • 7El-Amawy A,Latifi S.Properties and performance of folded hypercubes[J].IEEE Transactions on Parallel and Distributed Systems,1991,2(1):31-42.
  • 8XU Jun-ming.Topological Structure and Analysis of Intercornection Networks[M].Dordrecht/Boston/London:Kluwer Academic Publishers,2001.

共引文献16

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部