期刊文献+

自适应双线性广义模糊增强的图像轮廓提取 被引量:5

Contour Extraction of Image Using Adaptive Bilinear Generalized Fuzzy Enhancement
原文传递
导出
摘要 在模糊集合论(FS)和广义模糊集合论(GFS)的基础上,构造出用于模糊增强图像区域对比度的新型线性广义模糊算子(LGFO),理论分析并验证了其性质。提出了一种自适应双线性广义模糊增强算法用于提取图像边缘轮廓,该算法利用线性广义隶属度变换函数与LGFO,实现了灰度图像空间与广义模糊空间的相互转换,空间转换过程中对线性广义模糊隶属空间实施了线性广义模糊增强处理,最终在灰度图像空间中使用"MIN"算子提取图像轮廓。该算法还使用可检测边缘度与噪声标准差之商作为图像增强的评估标准,自动选择模糊参数D,实现了线性广义模糊增强图像的自适应优化。实验表明,该算法快速无失真,适用于彩色图像,提取的图像轮廓准确、层次分明。 A new linear generalized fuzzy operator (LGFO) used for fuzzy enhancement of regional contrast is constructed based on the theory of traditional fuzzy set (FS) and generalized fuzzy set (GFS), and theoretical analyses and testing the characters LGFO. And then an algorithm for adaptive bilinear generalized fuzzy enhancement used for extracting edge contour of images is put forward. The algorithm is to achieve space transform between gray image space and generalized fuzzy space by using linear generalized membership transform function and LGFO. Using the algorithm, the linear generalized fuzzy membership space is enhanced fuzzily by LGFO in the process of space transform. Finally, the contour of image is extracted using "MIN" operator in gray image space. The algorithm is also to achieve adaptive optimization of the image after linear generalized fuzzy enhancement by selecting fuzzy parameter D automatically, using the quotient between detectable edge degree and noise standard deviation as the evaluation standard of image enhancement. The experiments show that the algorithm is efficient and has no distortion, and can be applied to color image. By using the algorithm, the contour of image is accurate and structured.
出处 《中国激光》 EI CAS CSCD 北大核心 2010年第2期495-504,共10页 Chinese Journal of Lasers
基金 国家教育部博士点基金(2006021600)资助项目
关键词 图像处理 轮廓提取 广义模糊集合 广义模糊增强 线性广义模糊算子 线性广义隶属度变换 image processing contour extraction generalized fuzzy set generalized fuzzy enhancement linear generalized fuzzy operator linear generalized membership transform
  • 相关文献

参考文献19

  • 1L. A. Zedeh. Fuzzy sets [J]. Information and Control, 1965, 8(3):338-353.
  • 2陈武凡 鲁贤庆 陈建军 等.彩色图像边界检测的新算法.中国科学:A辑,1995,25(2):219-225.
  • 3J. C. Russ. The Image Processing Handbook [M]. New York: CRC Press, 1994.
  • 4S. K. Pal, R. A. King, On edge detection of X ray images using fuzzy sets [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983, 5(1):69-77.
  • 5S. K. Pal, R. A. King. Image enhancement using smoothing with fuzzy sets [J]. IEEE Transactions on System, Man, and Cybernetics, 1981, 11(7) :494-501.
  • 6S. K. Pal, R. A. King. Image enhancement using fuzzy sets [J]. Electron. Lett., 1980, 16(9) :376-378.
  • 7王晖,张基宏.图像边界检测的区域对比度模糊增强算法[J].电子学报,2000,28(1):45-47. 被引量:48
  • 8王刚,肖亮,贺安之.脊小波变换域模糊自适应图像增强算法[J].光学学报,2007,27(7):1183-1190. 被引量:28
  • 9王湘晖,曾明.基于视觉感知的图像增强质量客观评价算法[J].光电子.激光,2008,19(2):258-262. 被引量:25
  • 10S. Singh, K. Bovis. An evaluation of contrast enhancement techniques for mammorgraphic breast masses [J]. IEEE Transactionson on Information Technology in Biomedicine, 2005, 9(1) :109-119.

二级参考文献72

共引文献189

同被引文献56

引证文献5

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部