摘要
以MClx(M=Pd,Fe,Cr;x=2,3,3)为金属源,辅助合成有序介孔碳(OMC),以改善其负载Pt后的电催化性能.X射线衍射(XRD)和透射电镜(TEM)测试结果显示,适量PdCl2的引入并未破坏介孔碳的有序结构,由于经历有机碳的高温裂解,OMC-PdCl2主要以金属Pd为存在形式,较为均一嵌入OMC的骨架中,并在负载Pt的过程中与Pt形成二元催化剂.电化学氢吸附-脱附测试结果表明,Pt/OMC-MClx表现出优异的催化性能,电化学活性面积为Pt/OMC的2-4倍;其中Pt/OMC-PdCl2最佳,活性面积达120.2m2.g-1,Pt/OMC-CrCl3和Pt/OMC-FeCl3次之.此外,Pt/OMC-MClx还具有良好的催化稳定性,经100个循环测试后,依然保持较高的催化活性,仅衰减22%-40%,使得该材料在催化领域具有很好的应用前景.
Abstract: The Pt-loading properties of ordered mesoporous carbon (OMC) synthesized with assistance of MClx (M=Pd, Fe, Cr; x=2, 3, 3) were investigated. X-ray diffraction (XRD) and transmission electron microscope (TEM) show that the ordered structure is well-preserved after the introduction of PdCl2. Because of the pyrolysis of organic carbon the OMC-PdCl2 is mainly present in the form of metallic Pd and is homogenously embedded into the scaffold of the OMC. A binary catalyst comprised of metallic Pd and microwave-reduced Pt nanoparticles was also generated. Electrochemical hydrogen absorption-desorption tests reveal that Pt/OMC-MClx possesses excellent catalytic performance and has an electrochemical active surface area (SEA) being as 2-4 times as that of Pt/OMC. Pt/OMC-PdCl2 has the highest SEA of 120.2 m^2·g^-1 followed by Pt/OMC-CrCla and then Pt/OMC-FeCl3. After a long-term cyclic voltammetric test, Pt/OMC-MClx still exhibits excellent catalytic stability and relatively higher catalytic activity as evidenced by a 22%-40% decrease in catalytic activity after one hundred cycles. This work will open up a most promising application in catalysis.
出处
《物理化学学报》
SCIE
CAS
CSCD
北大核心
2010年第2期385-391,共7页
Acta Physico-Chimica Sinica
基金
国家自然科学基金(50871053)
航空科学基金(2007ZF52061)资助项目~~
关键词
金属盐
辅助催化
氢吸附-脱附
催化稳定性
有序介孔碳
Metal salt
Assisted catalysis
Hydrogen absorption-desorption
Catalytic stability
Orderedmesoporous carbon