期刊文献+

具有旋转不变性的图像矩的快速算法 被引量:11

Quick Algorithm of Image Moments with Rotational Invariance
原文传递
导出
摘要 在具有旋转不变性图像矩的传统算法中,必须将图像的坐标从直角坐标系转换到极坐标系,这种转换不仅会极大地增大计算量,并且会产生明显的舍入误差,从而导致以图像矩为特征的图像识别误差率上升,利用图像矩重建的图像质量下降。为了消除在像素坐标的转换过程中带来的不利影响,以圆谐傅里叶矩的计算为例,介绍了一种直接在直角坐标系下计算图像矩的方法。实验证明,这种方法不仅彻底消除了像素的坐标转换带来的误差,而且大幅降低了计算量。 The traditional method of computing rotation invariant moments of image,which needs to convert the image into the polar coordinate system,not only increases the computational load greatly,but also creates large rounding error,and results in error rate increase during image recognition and reconstructed image quality deterioration with image moments. To avoid the disadvantages caused during the process of pixel conversion,this paper took the computation of radical harmonic Fourier moments as example,and proposed a new method of computing moments in rectangular coordinate system immediately. The results of the experiments show that the new method can not only eliminate error caused by coordinate conversion,but also significantly reduce computational load.
出处 《光学学报》 EI CAS CSCD 北大核心 2010年第2期394-398,共5页 Acta Optica Sinica
基金 国家自然科学基金(60562001)资助课题
关键词 图像处理 旋转不变性 正交矩 圆谐傅里叶矩 快速算法 image processing rotational invariance orthogonal moments radical harmonic Fourier moments quick algorithm
  • 相关文献

参考文献12

  • 1D. Casasent, D. Psaltis. Position, rotation and scale invariant optical correlation[J]. Appl. Opt., 1976, 15(2): 1795-1799.
  • 2H. H. Arsennault, Y. Sheng. Properties of the circular harmonic expansion for rotation-invariant pattern recognition[J]. Appl. Opt., 1986, 25(18): 3225-3229.
  • 3Z. L. Ping, Y. L. Sheng. Fourier-mellin descriptor and interpolated feature space trajectories for three-dimensional object recognition[J]. Opt. Engng. , 2000, 39:1260-1266.
  • 4M. K. Hu. Visual pattern recognition by moment invariants[J]. IRE Trans. Inf. Theory, 1926,8(2): 179-187.
  • 5M. R. Teague. Image analysis via the general theory of moments [J]. J. Opt. Soc. Am., 1980, 70(8): 920-930.
  • 6Y. L. Sheng, L. X. Shen. Orthogonal Fourier-mellin moments for invariant pattern recognition[J]. J. Opt. Soc. Am. A, 1994, 11(6): 1748-1757.
  • 7Z. L. Ping, Rigen Wu, Y. L. Sheng. Image description with chebyshev-Fourier moments[J]. J. Opt. Soc. Am. A, 2002, 19(9) : 1748-1754.
  • 8Haiping Ren, Ziliang Ping et al.. Multidistortion-invariant image recognition with radial harmonic Fourier moments[J]. J. Opt. Soc. Am. A, 2003, 20(4): 631-637.
  • 9平子良,任海萍,盛云龙,午日亘.一种广义正交不变图像矩:雅可比-傅立叶矩[J].光电子.激光,2008,19(3):388-393. 被引量:3
  • 10A. B. Bhatia, E. Wolf. On the circular polynomials of Zernike and related orthogonal sets[J]. Proc. Camb. Philos. Soc., 1954, 50(1): 40-48.

二级参考文献14

  • 1余瑞星,李言俊,张科.基于离散余弦变换的水平集算法研究[J].光电子.激光,2006,17(6):738-741. 被引量:4
  • 2李雷达,郭宝龙,刘雅宁.基于伪Zernike矩的抗几何攻击图像水印[J].光电子.激光,2007,18(2):231-235. 被引量:21
  • 3Oasasent D, Psaltis D. Position, rotation and scale invariant optical correlation[J]. Applied Optics, 1976,15:1795-1799.
  • 4Arsennault H H and Sheng Y. Properties of the circular harmonic expansion for rotation-invariant pattern recognition[J]. Appl Opt, 1986, 25(18) :3225-3229.
  • 5Ping Z L,Sheng Y L. Fourier-mellin descriptor and interpolated feature space trajectories for three-dimensional object recognition [J]. Opt Eng, 2000,39 : 1260-1266.
  • 6Hu M K. Visual pattern recognition by moment invariants. IRE Trans Inf Theory IT-8,1962,179-187.
  • 7Teague M R. Image analysis via the general theory of rnoments[J]. J Opt Soc Am,1980,70:920-930.
  • 8Sheng Y,Shen L. Orthogonal Fouier-mellin moments for invariant pattern recognition[J]. J Opt Soc Am A,1994,6:1748-1757.
  • 9Ping Z L, Rigen Wu, Sheng Y L. Image description with chebyshevFourier moments[J]. J Opt Soc Am A,2002,19(9): 1748-1754.
  • 10Ren H P, Ping Z L. Wurigen and Sheng Y L. Multi-distorted invariant image recognition with radial-harmonic-Fourier moments[J]. J Opt Soc Am A,2003,20(4) :631-637.

共引文献2

同被引文献113

引证文献11

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部