期刊文献+

叶栅反推器几何进气角、压比对反推性能的影响 被引量:3

Effect of Blade Entrance Angle and Pressure Ratio on Cascade Thrust Reverser Performance
下载PDF
导出
摘要 航空发动机叶栅反推器叶型参数与反推效率、流量系数之间的规律对于反推装置的设计具有重要意义。建立了外涵叶栅反推器的轴对称计算模型,给出了内涵计算域的有效处理方法。利用数值模拟手段研究了叶片几何进气角、外涵入口压比的变化对反推效率、流量系数等的影响规律,并将计算结果与可能得到的试验结果的数据点进行了比较。结果表明,计算结果与实验结果吻合。当β1γ小于30°时,随着几何进气角的增加,反推效率快速增加,流量系数则迅速下降;当30°<β1γ<55°时,反推效率和流量系数随压比的变化都有较大波动;当β1γ大于55°时,继续增大叶片几何进气角β1γ,流量系数和反推效率均大幅下降。反推效率随着压比的增大而降低。在较小几何进气角时,流量系数随压比增大而增大,在较大几何进气角时,流量系数随压比变化不大。 It is important to study the mechanism between the cascade blade profile parameters and the thrust reverser effectiveness. By the numerical methods,the efficient and reliable numerical axisymmetric models have been established, especially the inner core passage, the effect of blade entrance angle and fan nozzle pressure ratio on thrust reverser effectiveness and discharge coefficient is investigated, the calculated results and the available experimental data are compared. Results show that the calculated and the experimental results are identical. When blade entrance angle less than 30° ,the effectiveness increase quickly, but the discharge coefficient decrease rapidly. When blade entrance angle is in the middle of 30°and 55°,the effectiveness and the discharge coefficient have a large fluctuate as the entrance angle increases. When the entrance angle more than 55 °, continue to increase the entrance angle, the effectiveness and the discharge coefficient decrease rapidly at the same time. The thrust reverser effectiveness declines quickly. The thrust reverser efficiency declines as the increase of the pressure ratio. The discharge coefficient increases rapidly as the increase of the pressure ratio in the small blade entrance angle while change smoothly in the big blade entrance angle.
作者 何艳 刘友宏
出处 《科学技术与工程》 2010年第2期458-465,共8页 Science Technology and Engineering
关键词 叶栅反推器 几何进气角 压比 反推效率 流量系数 cascade thrust reverser blade entrance angle pressure ratio thrust reverser effectiveness discharge coefficient
  • 相关文献

参考文献6

  • 1邵万仁,叶留增,沈锡钢.反推力装置关键技术及技术途径初步探讨.中国航空学会2007年学术年会,动力专题24.
  • 2Asbury S C, Yetter J A. Static performance of six innovative thrust reverser concepts for subsonic transport applications. NASA TM- 2000-210300.
  • 3Hall S,Cooper R,Raghunathan S. Fluidic flow control in a natural blockage thrust reverser. AIAA 2006-3513.
  • 4Hall S, Benard E, Raghunathan S. Progress in developing innovative flow control in a cascade thrust reverser. 24th International Congress of the Aeronautical Sciences . 2004.
  • 5孟军强,钟易成.基于NURBS的涡轮叶片设计及其性能分析.中国航空学会第六届动力年会,2006;215-221.
  • 6Yao H,Raghunathan S,Cooper R K, et al. Numerical simulation on flow fields of the nature blockage thrust reverser. AIAA 2005 -631.

共引文献2

同被引文献18

  • 1靳宝林,邢伟红,刘殿春.飞机/发动机推进系统反推力装置[J].航空发动机,2004,25(4):48-52. 被引量:41
  • 2靳宝林,朱明俊.航空发动机推力矢量技术发展趋势分析[J].航空发动机,1997,18(1):44-49. 被引量:12
  • 3Gilbert B, Marconi F, Kalkhoran I. Innovative Concept for Cascade Thrust Reverser Without Blocker Doors [R]. AIAA 1997-0823, 1997.
  • 4Nobel T P. Experimental Thrust Reverser Design with Computational Analysis [R]. AIAA 94-0021, 1994.
  • 5Ferreira S B. Study of the Influence of Aircraft Geome- try on the Computed Flowfield During Thrust Reverser Operation [R]. AIAA 2006-3673, 2006.
  • 6Gilbert B. Innovative Concept for Cascade Thrust Re- verser without Blocker Doors [R]. AIAA 97-823, 1997.
  • 7Marconi F. Computational Fluid Dynamics Support of the Development of a Blockerless Engine Thrust Reverser Concept [R]. AIAA 97-3151, 1997.
  • 8Asbury S C, Yetter J A. Static Performance of Six Inno- vative Thrust Reverser Concepts for Subsonic Transport Applications [R]. NASA TM-2000-210300, 2000.
  • 9Flamm J D. Experimental Study of a Nozzle Using Flu- idic Counterflow for Thrust Vectoring [R]. AIAA98-3255, 1998.
  • 10张德志.中国大型飞机发动机研制中的关键技术[J].中国民航大学学报,2008,26(5):26-28. 被引量:5

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部