期刊文献+

多频激励下滞后非线性车辆悬架系统的动力特性分析

Vibration Analysis on Vehicle Suspension System with Hysteretic Nonlinearity Characteristic under Multi-frequency Excitation
下载PDF
导出
摘要 基于顺行平面Hamilton系统周期-能量关系及KAM理论证明的前期研究基础,通过对滞后非线性车辆悬架系统在多频激励下的受扰振动做进一步数值模拟,给出系统安全拟周期状态及等幅多频激励混沌状态的新参数验证;增加了不等幅多频激励混沌状态的数值模拟结果,界定了不等幅多频激励下滞后非线性车辆悬架系统的动力特性。 Based on the theory prove and the forced vibration characteristic analysis of a single degree for freedom 1/4 hysteretic nonlinearity vehicle suspension systim under multi-frequency excitation before, more improved numerical simulations and examples were given to testify the period-energy relationship of direct two-dimensional Hamilton system and KAM theory. The new coefficient validation and theoretical analysis foreigen period of forced kintic system are discussed. The numerical simulation of chaos state under unequal amplitude multi-frequency excitation is added to illuminate the vibrate characteristics of hysteretic vehicle suspension system. The results may supply theoretical bases for parameter recognition of the analysis and optimal design of stabilized rgion for vehicle suspension systems.
作者 郭璇 于威威
出处 《科学技术与工程》 2010年第3期720-725,共6页 Science Technology and Engineering
基金 国家自然基金(50908011) 北京交通大学校人才基金(C08J0120)资助
关键词 悬架系统 不等幅多频激励 混沌 周期-能量关系 拟周期 vehicle suspension system unequal amplitude multi-frequency excitation chaos periodenergy relationship quasi-period
  • 相关文献

参考文献9

二级参考文献25

  • 1朱位秋.随机振动[M].北京:科学出版社,1998..
  • 2Zeng Xianwu,Progress Natural Sci,1996年,6卷,4期,401页
  • 3莫叶,复变函数论,1980年,196页
  • 4Guan Keying,Ann Diff Equ,1998年,14卷,2期,120页
  • 5Suh M S, Yeo M S. Development of semi-active suspension systems using ER fluids for the wheeled vehicle.Journal of Intelligent Material Systems and Structures,2000,10(9) : 743~747.
  • 6Ni Y Q, Chen Y,Ko J M, et al. Neuro-control of cable vibration using semi-active magneto-rheological dampers. Engineering Structures, 2002,24: 295~ 307.
  • 7Stammers C W, Sireteanu T. Vibration control of machines by use of semi-active dry friction damping. Journal of Sound and Vibration, 1998,209 (4): 671 ~ 684.
  • 8Frey M, Simiu E. Noise-induced chaos and phase space flux. Physica D, 1993,63: 321 ~340.
  • 9Xie W C. Effect of noise on chaotic motion of buckled column under periodic excitation. Nonlinear and Stochastic Dynamics ,ASME, 1994 ,AMD192/De-73 :215~225.
  • 10Lin H, Yim S C S. Analysis of a nonlinear system exhibiting chaotic, noisy chaotic, and random behaviors.Journal of Applied Mechanics, ASME, 1996,63:509~516.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部