摘要
P-polarization high reflectors are deposited by e-beam from hafnia and silica. 1-on-1 and N-on-1 tests at 1064-nm wavelength with P-polarization at 45° incidence are carried out on these samples. Microscope and scanning electron microscope are applied to investigate the damage morphologies in both 1-on-1 and N-on^l tests. It is found that the laser damage threshold is higher in N-on-1 tests and nodular defect is the main inducement that leads to the damage because nodular ejection with plasma scalding is the typical damage morphology. Similar damage morphology observed in the two tests indicates that the higher laser damage threshold in N-on-1 test is attributed to the mechanical stabilization process of nodular defects, owing to the gradually increased laser fluence radiation. Based on the typical morphology study, some process optimizations are given.
P-polarization high reflectors are deposited by e-beam from hafnia and silica. 1-on-1 and N-on-1 tests at 1064-nm wavelength with P-polarization at 45° incidence are carried out on these samples. Microscope and scanning electron microscope are applied to investigate the damage morphologies in both 1-on-1 and N-on^l tests. It is found that the laser damage threshold is higher in N-on-1 tests and nodular defect is the main inducement that leads to the damage because nodular ejection with plasma scalding is the typical damage morphology. Similar damage morphology observed in the two tests indicates that the higher laser damage threshold in N-on-1 test is attributed to the mechanical stabilization process of nodular defects, owing to the gradually increased laser fluence radiation. Based on the typical morphology study, some process optimizations are given.
基金
supported by the National"863"Program of China under Grant No.2006AA804908