期刊文献+

Quantitative deviation of the two-photon absorption coefficient based on three laser pulse models

Quantitative deviation of the two-photon absorption coefficient based on three laser pulse models
原文传递
导出
摘要 The pulse profile influence of excitation light on the two-photon absorption coefficient β is theoretically and numerically studied. Based on Gaussian spatial and temporal laser, we obtain an expansion formula of energy transmission. As compared with a plain beam and a pulse beam that is rectangular in time but Gaussian in space, the relative deviations of β turn out to be about 214% and 47%, respectively. These differences indicate that a smaller β may be obtained than the real one in usual nonlinear transmission. Our result suggests that by taking real pulse profile into account, a more exact β can be derived in energy transmission measurement. The pulse profile influence of excitation light on the two-photon absorption coefficient β is theoretically and numerically studied. Based on Gaussian spatial and temporal laser, we obtain an expansion formula of energy transmission. As compared with a plain beam and a pulse beam that is rectangular in time but Gaussian in space, the relative deviations of β turn out to be about 214% and 47%, respectively. These differences indicate that a smaller β may be obtained than the real one in usual nonlinear transmission. Our result suggests that by taking real pulse profile into account, a more exact β can be derived in energy transmission measurement.
机构地区 School of Science
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2010年第1期93-98,共6页 中国光学快报(英文版)
基金 supported by the Key Subject Construction Project of Hebei Provincial University and the Doctoral Fund of Hebei University of Technology
关键词 ABSORPTION Gaussian beams Light absorption Luminescence of organic solids Multiphoton processes Optical materials PHOTONS Absorption Gaussian beams Light absorption Luminescence of organic solids Multiphoton processes Optical materials Photons
  • 相关文献

参考文献40

  • 1W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
  • 2E. J. Sanchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).
  • 3Y. Shen, D. Jakubczyk, F. Xu, J. Swiatkiewicz, P. N. Prasad, and B. A. Reinhardt, Appl. Phys. Lett. 76, 1 (2000).
  • 4L. W. Tutt and T. F. Boggess, Prog. Quant. Electr. 17, 299 (1993).
  • 5A. A. Said, C. Wamsley, D. J. Hagan, E. W. Van Stry- land, B. A. Reinhart, P. Roderer, and A. G. Dillard, Chem. Phys. Lett. 228, 646 (1994).
  • 6G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, Opt. Lett. 20, 435 (1995).
  • 7J. W. Perry, K. Mansour, I.-Y. S. Lee, X. L. Wu, P. V. Bedworth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, and H. Sasabe, Science 273, 1533 (1996).
  • 8H. Lei, H. Z. Wang, Z. C. Wei, X. J. Tang, L. Z. Wu, C. H. Tung, and G. Y. Zhou, Chem. Phys. Lett. 333, 387 (2001).
  • 9G. S. He, T.-C. Lin, P. N. Prasad, C.-C. Cho, and L.- J. Yu, Appl. Phys. Lett. 82, 4717 (2003).
  • 10D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部