期刊文献+

Artificial neural network method for determining optical properties from double-integrating-spheres measurements 被引量:4

Artificial neural network method for determining optical properties from double-integrating-spheres measurements
原文传递
导出
摘要 measurement of the optical properties of biological tissue is very important for optical diagnosis and therapeutics. An artificial neural network (ANN)-based inverse reconstruction method is introduced to determine the optical properties of turbid media, which is based on the reflectance (R) and transmittance (T) of a thin sample measured by a double-integrating-spheres system. The accuracy and robustness of the method has been validated, and the results show that the root mean square errors (RMSEs) of the absorption coefficient μa and scattering coefficient μ′ reconstruction are less than 0.01 cm-1 and 0.02 cm-1, respectively. The algorithm is not only very accurate in the case of a lower albedo (~0.33), but also very robust to the noise of R and T especially for the μ′ reconstruction. measurement of the optical properties of biological tissue is very important for optical diagnosis and therapeutics. An artificial neural network (ANN)-based inverse reconstruction method is introduced to determine the optical properties of turbid media, which is based on the reflectance (R) and transmittance (T) of a thin sample measured by a double-integrating-spheres system. The accuracy and robustness of the method has been validated, and the results show that the root mean square errors (RMSEs) of the absorption coefficient μa and scattering coefficient μ′ reconstruction are less than 0.01 cm-1 and 0.02 cm-1, respectively. The algorithm is not only very accurate in the case of a lower albedo (~0.33), but also very robust to the noise of R and T especially for the μ′ reconstruction.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2010年第2期173-176,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China(No.30870657) the Natural Science Foundation of Tianjin(No.09JCZDJC18200) the 111 Project(No.B07014).
关键词 Repair TURBIDITY Repair Turbidity
  • 相关文献

参考文献12

  • 1T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, and J. N. Wilke, J. Biomed. Opt. 8, 2 (2003).
  • 2G. M. Palmer and N. Ramanujam, Appl. Opt. 45, 5 (2006).
  • 3H. Zhao, X. Zhou, J. Liang, and S. Zhang, Chin. Opt. Lett. 6, 12 (2008).
  • 4F. Gao, L. Zhang, J. Li, and H. Zhao, Chin. Opt. Lett. 6, 12 (2008).
  • 5A. Kienle, M. S. Patterson, R. Bays, G. Wagnieres, and H. Bergh, Appl. Opt. 37, 4 (1998).
  • 6N. Rajaram, T. H. Nguyen, and J. W. Tunnell. J. Biomed. Opt. 13, 5 (2008).
  • 7J. W. Pickering, S. A. Prahl, N. V. Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, Appl. Opt. 32, 4 (1993).
  • 8D. Zhu, W. Lu, S. Zeng, and Q. Luo, J. Biomed. Opt. 12, 6 (2007).
  • 9J. S. Dam, T. Dalgaard, P. E. Fabricius, and S. A. Engels, Appl. Opt. 39, 7 (2000).
  • 10L. Wang, S. L. Jacques, and L. Zheng, Comput. Meth. Programs Biomed. 47, 131 (1995).

同被引文献36

  • 1朱国强,刘士荣,俞金寿,.基于支持向量机的数据建模在软测量建模中的应用[J].华东理工大学学报(社会科学版),2002,17(S1):6-10. 被引量:8
  • 2祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:186
  • 3Jemal A , Bray F, Center M M, et al. Global cancer statis- tics [J]. Ca CancerJ Clin, 2011, 61(2): 69-90.
  • 4Piao D, Xie H, Zhang W, et al. Endoscopic, rapid near-in- frared optical tomography [ J ]. Optics Letters, 2006, 31 (19) : 2876-2878.
  • 5Xu G, Piao D, Musgrove C H, et al. Trans-rectal uhra- sound-coupled near-infrared optical tomography of the pros- tate Part I : Simulation [ J]. Optics Express, 2008, 16 (22) : 17484-17504.
  • 6Jiang Z, Piao D, Xu G, et al. Trans-rectal ultrasound-cou- pled near-infrared optical tomography of the prostate Part II : Experimental demonstration [ J]. Optics Express, 2008, 16 (22) : 17505-17520.
  • 7Piao D, Xie H, Musgrove C, et al. Near-infrared optical tomography : Endoscopic imaging approach [ J]. Proc SPIE, 2007, 6431: 1-10.
  • 8Zhao H, Zhou X, Fan Y, et al. Near-infrared frequency do- main system and fast inverse Monte Carlo algorithm for endo- scopic measurement of tubular tissue [ J]. Journal of X-Ray Science and Technology, 2011, 19(1) : 57-68.
  • 9Chen X, Liang J, Zhao H, et al. Modeling and reconstruc- tion of optical tomography for endoscopic applications : Simu- lation demonstration [ J]. Applied Physics Letters, 2011, 99 (7) : 0737021-3.
  • 10Musgrove C, Bunting C F, Dehghani H, et al. Computa- tional aspects of endoscopic (trans-rectal) near-infrared op- tical tomography : Initial investigations [ J ]. Proceedings of the SPIE, 2007, 6434 : 1-10.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部