期刊文献+

利用第二个状态变量同步广义Lorenz系统

Synchronization for General Lorenz Chaotic System Using the Second State Variable
原文传递
导出
摘要 根据广义Lorenz混沌系统的具体结构和微分方程稳定性理论,利用以广义Lorenz混沌系统的第二个状态变量作为驱动变量,设计了适当的控制器,实现了2个相同的广义Lorenz混沌系统的同步,数值仿真结果表明这些同步方法的是有效的和可行的。 According to the structure of the general Lorenz chaotic system and differential eguation stability theory, some controllers are applied to synchronize two identical general Lorenz chaotic systems by taking the second state variable of the mas- ter system as driving variable, Numerical simulations are presented to show the effectiveness and feasibility of these synchroniza- tion methods.
作者 王安福
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第2期93-97,共5页 Journal of Wuhan University of Technology
基金 湖北省教育厅科学技术研究重点项目(D20096003) 国家自然科学基金(60474011)
关键词 广义Lorenz混沌系统 同步 状态变量 general Lorenz chaotic system synchronization state variable
  • 相关文献

参考文献9

  • 1Itoh M, Chua L O. Reconstruction and Synchronization of Hyperchaotic Circuits Via one State Variable[ J ]. Int J Bifur Chaos, 2002(10) : 2069-2085.
  • 2Hegazi A S, Agiza H N, El-Dessoky M M. Adaptive Synchronization for Rossler and Chua's Circuit System[J 1. Int J Bifur Chaos,2002(7) : 1579-1597.
  • 3Wang Y W, Guan Z H, Wang H O. Feedback and Adaptive Control for the Synchronization of Chen System Via a Single Variable[J ]. Phys Lett A,2003(312) :34-40.
  • 4Yassen M T. Adaptive Control and Synchronization of a Modified Chua's Circuit System[J ]. Applied Mathematics and Computation, 2003 ( 135 ) : 113-128.
  • 5Lu J A, Wu X Q, Han X P, et al. Adaptive Feedback Synchronization of a Unified Chaotic System[J]. Phys Lett A,2004 (329) :327-333.
  • 6Han X P, Lu J A, Wu X Q. Adaptive Feedback Synchronization of Lu System[J]. Chaos, Solitons and Fractals,2004(22) : 221-227.
  • 7王绍明,王安福.Liu混沌系统的单状态变量控制与同步[J].江西师范大学学报(自然科学版),2007,31(3):285-288. 被引量:5
  • 8王绍明,王安福.利用单个状态变量同步广义Lorenz系统[J].武汉理工大学学报,2007,29(5):120-124. 被引量:3
  • 9Ho M C, Hung Y C, Liu Z Y, et al. Reduced-order Synchronization of Chaotic Systems with Parameters Unknown[J]. Phys Lett A,2006(348) : 251-259.

二级参考文献18

  • 1Pecora L M,Carrol T L.Synchronization in Chaotic System[J].Phys Rev Lett,1990,64:821-824.
  • 2Chen G,Dong X.From Chaos to Order:Methodologies,Perspectives and Applications[M].Singapore:World Scientific,1998.
  • 3Itoh M,Chua L O.Reconstruction and Synchronization of Hyperchaotic Circuits via one State Variable[J].Int J Bifur Chaos,2002,10:2069-2085.
  • 4Hegazi A S,Agiza H N,El-dessoky M M.Adaptive Synchronization for Rossler and Chua's Circuit System[J].Int J Bifur Chaos,2002,7:1579-1597.
  • 5Wang Y W,Guan Z H,Wang H O.Feedback and Adaptive Control for the Synchronization of Chen System via a Single Variable[J].Phys Lett A,2003,312:34-40.
  • 6Yassen M T.Adaptive Control and Synchronization of a Modified Chua's Circuit System[J].Applied Mathematics and Computation,2003,135:113-128.
  • 7Lu J A,Wu X Q,Han X P,et al.Adaptive Feedback Synchronization of a Unified Chaotic System[J].Phys Lett A,2004,329:327-333.
  • 8Ho M C,Hung Y C,Liu Z Y,et al.Reduced-order Synchronization of Chaotic Systems with Parameters Unknown[J].Phys Lett A,2006,348:251-259.
  • 9Boccaletti S,Grebogi C,Lai Y C,et al.The control of chaos:theory and applications[J].Phys Rep,2000,329:103-197.
  • 10Boccaletti S,Kurths J,Osipov G,et al.The synchronization of chaotic systems[J].Phys Rep,2002,336:1-101.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部