期刊文献+

广义B样条曲线节点插入算法及其应用

Knot Insertion Algorithm of Generalized B-splines and Its Application
原文传递
导出
摘要 通过研究二阶常系数微分算子的零空间及其初值问题解的唯一性,引入了广义B样条曲线的概念,给出了B样条曲线的一种统一表示形式,介绍了该样条的求值算法及节点插入算法,并以多项式B样条为例,将样条曲线的求值算法和节点插入算法推广到曲面。最后给出了相应算例。数值实验表明,求值算法和节点插入算法对样条曲线和样条曲面均准确、有效。利用广义B样条曲线在2个方向上取不同类型的样条曲线,构造了特殊曲面。 A new representation to B-splines and the concept of generalized B-spline are introduced in this paper by considering the null space of a second order constant coefficient differential operator and the unique solution to an initial-value problem. The evaluation algorithm and knot insertion algorithm for generalized B-splines are also presented, and they are extended to sur- faces by taking polynomial spline surface for example. At last, numerical examples show that the algorithms are valid to both curves and surfaces. On the other hand, the tensor product surfaces can be constructed by using different kinds of the splines and it is easy to construct some special surfaces.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第2期120-124,共5页 Journal of Wuhan University of Technology
基金 河北理工大学科学研究基金(z0819)
关键词 广义B样条曲线 求值算法 节点插入算法 特殊曲面 generalized B-splines curve evaluation algorithm knot insertion algorithm special surfaces
  • 相关文献

参考文献11

  • 1de Boor C. On Calculation with B-spline[J ]. Journal of Approximation Theory, 1972, 6(1) : 50-62.
  • 2Boehm W, Prautzsch H. The Insertion Algorithm[J ]. Computer Aided Design, 1985, 17(2) : 58-59.
  • 3Koch P E, Lyche T, Nearntu M,et al. Control Curves and Knot Insertion for Trigonometric Splines[J]. Adv Comput Math, 1995 (3): 405 -424.
  • 4Farin G. Curves and Surfaces {or Computer Aided Geometric Design[ M]. [ S. l. ]: Academic Press, 1988.
  • 5苏本跃,黄有度.T-B样条曲线及其应用[J].大学数学,2005,21(1):87-90. 被引量:16
  • 6吴晓勤,唐运梅.曲率连续的三角B样条曲线与曲面[J].计算机应用与软件,2005,22(1):118-120. 被引量:8
  • 7Jena M K, Shunmugaraj P, Das P C. A Subdivision Algorithm for Trigonometric Spline Curves[J ]. Computer Aided Geometric Design, 2002(19):71-88.
  • 8Lyehe T, Sehumaker L L, Stanley S. Quasi-interpolants Based on Trigonometric Splines[J ]. Journal of Approximation Theory, 1998:280-309.
  • 9Jena M K, Shunmugaraj P, Das P C. A Subdivision Algorithm for Generalized Bernstein-bezier Curves[J ]. Computer Aided Geometric Design, 2001 (18) : 672-698.
  • 10郭凤华,杨兴强.调整节点矢量对B样条曲线的影响[J].计算机工程与科学,2005,27(11):109-110. 被引量:9

二级参考文献18

  • 1方逵,刘杰.任意三角形域上的一种C^2插值方法[J].计算数学,1993,15(4):456-461. 被引量:3
  • 2朱仁芝,程谟嵩.拟合任意空间曲面的三角函数方法[J].计算机辅助设计与图形学学报,1996,8(2):108-114. 被引量:48
  • 3张纪文,罗国明.三次样条曲线的拓广──C曲线[J].计算机辅助工程,1996,5(3):12-20. 被引量:236
  • 4G Farin, Rational Curves and Surfaces, in: T Lyche, L Schumaker ( Eds. ),Mathematical Methods in Computer Aided Geometric Desioa. Academic Press, Boston. 1989.
  • 5L Piegl, On NURBS: A survey, 1EEE Computer Graphics and Applications,1991,11(1),55 - 71.
  • 6H Potlmann, M G Wagner, Helix Splines as an example of arlene Tehebycheftian Splines. Adv Comput Math. 1994,2,123 - 142.
  • 7J M Pona, Shape Preserving Representations for Trigonometric Polynomial Curves, Computer Aided Getmetric Design, 1997,14 : 5 - 11.
  • 8E Mamar, et al, Shape Preserving alternatives to the rational Bézier model, Computer Aided Geometric Desioa, 2001,18 ( 1 ) :37 - 60.
  • 9G Farin, Rational Curves and Surfaces, in: T Lyche, L Schumaker ( Eds. ),Mathematical Methods in Computer Aided Geometric Desioa. Academic Press, Boston. 1989.
  • 10H Pottmann, M G Wagner, Helix Splines as an example of affine Tchebycheffian Splines. Adv Comput Math. 1994,2,123 - 142.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部