期刊文献+

具有三重零奇异的时滞微分方程的分支 被引量:1

Bifurcation in Delay Differential Systems with Triple-Zero Singularity
下载PDF
导出
摘要 主要研究三重零奇异的判定和在R^n上零特征根对应的广义特征空间,利用中心流形简化和规范型计算得到参数时滞微分方程的简化形式,对应于文[A note on the triple zero linear degeneracy:Normal forms,dynamical and bifurcation behaviour of an unfolding.Int J Bifur and Chaos,2002,12:2799-2820]中的结果具体分析具有三重零奇异的参数时滞微分方程的分支行为,并给出一例子来阐述得到的结果. The paper is devoted to the determination of triple-zero singularity and the generalized eigenspace associated with zero eigenvalues in R^n. A concrete reduced form for parameterized delay differential systems is obtained by using center manifold reduction and normal form calculation. The results given in [A note on the triple zero linear degeneracy: Normal forms, dynamical and bifurcation behaviour of an unfolding. Int J Bifur and Chaos, 2002, 12:2799-28201 are employed to analyze the bifurcation behavior of the parameterized delay differential system with triple-zero singularity in detail and an example is presented to illustrate the results.
出处 《数学年刊(A辑)》 CSCD 北大核心 2010年第1期59-70,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10671069 No.10801051) 上海市重点学科建设基金(No.B407)资助的项目
关键词 三重零奇异 时滞微分方程 Takens—Bogdanov分支 Hopf-zero分支 Triple-zero singularity, Delay differential system, Takens-Bogdanov bifurcation, Hopf-zero bifurcation
  • 相关文献

参考文献7

  • 1Freire E, Garmero E, Rodriguez-Luis A J, Algaba A. A note on the triple zero linear degeneracy: Normal forms, dynamical and bifurcation behaviour of an unfolding [J]. Int J Bifur and Chaos, 2002, 12:2799-2820.
  • 2Xu Y X, Huang M Y. Homoclinic orbits and Hopf bifurcations in delay differential systems with T-B singularity [J]. J Differential Equations, 2008, 244:582-598.
  • 3Faria T, Magalhaes L T. Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation [J]. J Differential Equations, 1995, 122:181-200.
  • 4Faria T, Magalhaes L T. Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity [J]. J Differential Equations, 1995, 122:201-224.
  • 5Algaba A, Freire E, Gamero E. Resonances of periodic orbits in Rossler system in presence of a triple-zero bifurcation [J]. Int J Bifur and Chaos, 2007, 17:1997-2008.
  • 6Hale J K. Theory of functional differential equation [M]. New York: Springer-Verlag, 1977.
  • 7Hale J K, Lunel S M. Introduction to functional differential equations [M]. New York: Springer-Verlag, 1993.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部