摘要
主要研究三重零奇异的判定和在R^n上零特征根对应的广义特征空间,利用中心流形简化和规范型计算得到参数时滞微分方程的简化形式,对应于文[A note on the triple zero linear degeneracy:Normal forms,dynamical and bifurcation behaviour of an unfolding.Int J Bifur and Chaos,2002,12:2799-2820]中的结果具体分析具有三重零奇异的参数时滞微分方程的分支行为,并给出一例子来阐述得到的结果.
The paper is devoted to the determination of triple-zero singularity and the generalized eigenspace associated with zero eigenvalues in R^n. A concrete reduced form for parameterized delay differential systems is obtained by using center manifold reduction and normal form calculation. The results given in [A note on the triple zero linear degeneracy: Normal forms, dynamical and bifurcation behaviour of an unfolding. Int J Bifur and Chaos, 2002, 12:2799-28201 are employed to analyze the bifurcation behavior of the parameterized delay differential system with triple-zero singularity in detail and an example is presented to illustrate the results.
出处
《数学年刊(A辑)》
CSCD
北大核心
2010年第1期59-70,共12页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10671069
No.10801051)
上海市重点学科建设基金(No.B407)资助的项目