期刊文献+

有限级亚纯函数的不变原理

Invariance Principles for Meromorphic Functions of Finite Order
下载PDF
导出
摘要 研究有限级亚纯函数的统计性质,证明了有限级亚纯函数的几乎必然不变原理,如中心极限定理、重对数定律和泛函中心极限定理等统计定律是几乎必然不变原理的推论. This paper considers the statistical properties of meromorphic functions of finite order and proves the almost sure invariance principle for meromorphic functions of finite order. Statistical limit laws, such as the central limit theorem, the law of the iterated logarithm, and their functional versions, are immediate consequences.
作者 夏红强
出处 《数学年刊(A辑)》 CSCD 北大核心 2010年第1期99-106,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10571174) 留学回国人员科研启动基金(No.2007-1108)资助的项目
关键词 几乎必然不变原理 中心极限定理 亚纯函数 Almost sure invariance principle, Central limit theorem, Meromorphic functions
  • 相关文献

参考文献8

  • 1Philipp W, Stout W. Almost sure invariance principles for partial sums of weakly dependent random variables [J]. Mem Amer Math Soc, 1975, 161:1-140.
  • 2Denker M, Philipp W. Approximation by Brownian motion for Gibbs measures and flows under a function [J]. Ergod Th & Dynam Sys, 1984, 4:541-552.
  • 3Melbourne I, Nicol M. Almost sure invariance principle for nonuniformly hyperbolic systems [J]. Commun Math Phys, 2005, 260:131-146.
  • 4Melbourne I, Torok A. Central limit theorems and invariance principles for time-one maps of hyperbolic flows [J]. Commun Math Phys, 2002, 229:57-71.
  • 5Pollicott M, Sharp R. Invariance principles for interval maps with an indifferent fixed point [J]. Commun Math Phys, 2002, 229:337-346.
  • 6Mayer V, Urbanski M. Thermodynamical formalism and multifractal analysis for meromorphic functions of finite order [J]. Mem Amer Math Soc, 2010, 954:1-107.
  • 7Hall P, Heyde C. Martingale limit theory and its applications [M]. New York: Academic Press, 1980.
  • 8Feller W. An Introduction to probability theory and its applications [M]. Vol Ⅱ, New York: Wiley, 1966.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部