期刊文献+

空谱联合预测高光谱图像无损压缩rice算法 被引量:11

Spatial-spectral associated prediction-based rice algorithm for hyperspectral image lossless compression
下载PDF
导出
摘要 针对rice算法低维预测不能有效降低高光谱数据冗余问题,提出基于空谱联合预测的低复杂度rice算法,应用于高光谱图像无损压缩。根据高光谱图像三维数据特征建立三维预测模型,利用相邻波段谱间相关系数进行联合预测系数分配,有效地减少了高光谱图像空间和谱间冗余。提出基于预测误差均值的最优编码参数选择算法,计算复杂度由O(N)降为O(1)。实验结果表明,本文方法提高无损压缩比5%~40%,编码时间较经典rice算法缩短了4%以上,有利于实时处理和工程实现。 Aiming at the problem that the low-dimensional predictors of rice algorithm can not efficiently reduce the redundancy of hyperspectral image data, a spatial-spectral associated prediction-based rice algorithm with low complexity is proposed and applied to hyperspectral image lossless compression. According to the three-dimensional characteristics of hyperspectral image, a three-dimensional prediction model is established and the correlation coefficient of neighboring bands is used to assign the associated prediction coefficients, which efficiently reduces the spatial and spectral redundancy of hyperspectral image. Furthermore, an optimal encoding parameter selection algorithm based on the mean of prediction error is presented and the computational complex- ity is reduced from O (N) to O (1). Experimental results show that compared with traditional race algorithm, the proposed algorithm improves the lossless compression ratio by 5%-40% and reduces the coding time by over 4%, which is conducive to real-time processing and engineering implementation.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第1期105-110,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60603097)资助项目
关键词 空谱联合预测 rice算法 高光谱图像 无损压缩 最优编码参数选择 spatial-spectral associated prediction rice algorithm hyperspectral image lossless compression optimal encoding parameter selection
  • 相关文献

参考文献17

  • 1RYAN E, MAGLI G O, QUACCHIO E. Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC[J]. IEEE Geoscience and Remote Sensing Letters, January 2004, 1(1):21-25.
  • 2吴颖谦,方涛,施鹏飞.基于均匀网格编码量化的超光谱图像自适应压缩[J].红外与毫米波学报,2004,23(5):349-352. 被引量:3
  • 3MAGLI E. Multiband lossless compression of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007.
  • 4黄菁,朱日宏,李建欣.基于三维整数小波变换的高光谱图像编码方法[J].仪器仪表学报,2007,28(12):2274-2279. 被引量:4
  • 5RICE L A R E Practical universal noiseless coding[C]. 1979 SPIE Symposium Proceedings. San Diego, California. 1997.
  • 6RICE R F, P S Y, MILLER W H. Algorithms for a very high speed universal noiseless coding module. Pasadena,California 91109: JPL Publication 91-1,Jet Propulsion Laboratory, Feb. 15,1991, 111 - 130.
  • 7P YEH , R. F. R, MILLER W. H.On the optimality of code options for a universal noiseless coder[C], pasadena, california 91109: JPL Publication 91-1, Jet Propulsion Laboratory.
  • 8Yeh P S, MILLER W. H. A real time lossless data compression technology for remote sensing and other Applications [C]. International Geoscience and Remote Sensing Symposium (IGRSS), 1995, 94:1098-1101.
  • 9Lossless Data Compression. Recommendation for space data system standards and D.C.C. CCSDS 121.0-B-I.[U] Blue Book. Issue 1. Washington May 1997.
  • 10MRC, Universal Source Encoder for Space - USES. 1993, Microelectronics Research Center, University of New Mexico.

二级参考文献34

  • 1张晓玲,沈兰荪.一种基于自适应预测的医学图像高效无损压缩方法[J].电子学报,2001,29(z1):1914-1916. 被引量:5
  • 2B Aiazzi, P Alba, L Alparone, et al. Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction[J]. IEEE Trans.Geosci. Remote Sensing, 1999,37(5): 2287-2294.
  • 3M R Pickering,M J Ryan. Efficient spatial-spectral compression of hyperspectral data[J]. IEEE Trans. on Geosci. Remote Sensing, 2001,39(7):1536-1539.
  • 4M J Ryan, J F Arnold. The lossless compression of AVIRIS images by vector quantization[J]. IEEE Trans. Geosci. Remote Sensing, 1997,35(3):546-550.
  • 5G P Abousleman, et al. Hyperspectral image compression using entropyconstrained predictive trellis coded quantization[J]. IEEE Trans. Image Processing, 1997,6(4):566-573.
  • 6M R Pickering, M J Ryan. Compression of hyperspectral data using vector quantisation and the discrete cosine transform[A]. 2000 International Conference on Image Processing [C]. Vancouver, BC: ICIP,2000.195-198.
  • 7S R Tate. Band ordering in lossless compression of multispectral images[J]. IEEE Trans. Comput, 1997,46(4):477-483.
  • 8M J Weinberger, et al. The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS[R]. HPL-98-193,1998.
  • 9C Christopoulos, et al. The JPEG2000 still image coding system: an overview[J]. IEEE Trans. Consumer Electron. ,2000,46(4):1103-1127.
  • 10Aiazzi B, Alba P. Loss-less compression of multi/hyper-spectral imagery based on a 3-D Fuzzy Prediction [J], IEEE Trans. Geo-science and Remote Sensing, 1999, 37(5): 2287-2294.

共引文献25

同被引文献83

引证文献11

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部