期刊文献+

基于改进李群结构的特征协方差目标跟踪 被引量:9

Target tracking with feature covariance based on an improved Lie Group structure
下载PDF
导出
摘要 最近的研究发现,在对称正定流形上可构造一种改进的李群结构,并赋予具有双不变度量性质的对数-欧几里得黎曼度量,所得到的距离公式和黎曼均值均呈现简单形式。据此,利用目标的综合特征构建区域协方差阵为目标建模,提出一种基于改进李群结构的特征协方差目标跟踪方法。实验表明,这种跟踪方法实用有效,在相同的条件下,因为算法的计算量的减少,跟踪性能略优于基于仿射黎曼度量的协方差目标跟踪。 Recent research shows that an improved Lie group structure can be constructed on the symmetric positive manifold. This will lead to a bi-nvariant log-Euclidean metric, which makes the distance formula and Riemannian mean take a much simpler form. We model the tracked object with its covariance feature of the interest region and propose a feature covariance tracking method based on the improved Lie group structure. Experimental results show that this method is practical and efficient. Under the same tracking condition, its performance is slightly superior to that of the method based on widely used affine invariant Riemannian metric
出处 《仪器仪表学报》 CSCD 北大核心 2010年第1期111-116,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60603097)资助项目
关键词 目标跟踪 特征协方差 李群 黎曼流形 指数映射 target tracking feature covariance Lie group Riemannian manifold exponential mapping
  • 相关文献

参考文献13

  • 1ZHOU S K, CHELLAPPA R, MOGHADDAM B. Visual tracking and recognition using appearance adaptive models in particle filters [J]. IEEE Trans Image Processing. 2004, 13(11): 1491-1506.
  • 2刘良江,王耀南.灰度直方图和支持向量机在磁环外观检测中的应用[J].仪器仪表学报,2006,27(8):840-844. 被引量:7
  • 3HAGER G D, BELHUMEUR P N. Efficient region tracking with parametric models of geometry and illumination [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998: 20(10): 1025-1039.
  • 4BAKER S, MATTHEWS I. Lucas-Kanade 20 years on: A unifying framework [J]. International Journal of Com-puter Vision, 2004, 56(3):221-255.
  • 5ROSS D, LIM J W, LIN R S, et al. Incremental learning for robust visual tracking [J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
  • 6LI X, HU W I, ZHANG Z F, et al. Robust visual tracking based on incremental tensor subspace learning [A]. Proceeding of the IEEE International Conference on Computer Vision [C]. Rio de Janeiro, Brazil, October, 2007.
  • 7TUZEL O, PORIKLI F, MEER E Region covariance: A fast descriptor for detection and classification [A]. Proceeding of 9th European Conference on Computer Vision [C], Graz, Austria, 2006, 2: 589-600.
  • 8PENNEC X, FILLARD P, AYACHE N. A Riemannian framework for tensor computing [J]. International Journal of Computer Vision, 2006, 66 (1): 41-66.
  • 9PORIKLI F, TUZEL O, MEER E Covariance tracking using model update based on Riemannian manifolds [A]. Proceeding of IEEE Conference on Computer Vision and Pattern Recognition [C], New York, 2006, 1: 728-735.
  • 10ARSIGNY V, FILLARD R PENNEC X, et al. Geometric means in a novel vector space structure on symmetric positive-definite matrices [J]. SIAM Journal on Matrix Analysis and Applications, 2006, 29(1 ): 328-347.

二级参考文献9

  • 1DU H J,SUN D W.Pizza sauce spread classification using colour vision and support vector machines[J].Journal of Food Engineering,2005,66:137-145.
  • 2BLASCO J,ALEIXOS N,MOLTO E.Machine vision system for automatic quality grading of fruit[J].Biosystems engineering,2003,85(4):415-423.
  • 3KLINE D E,SURAK C,ARAMAN P A.Automated hardwood lumber grading utilizing a multiple sensor machine vision technology[J].Computers and Electronics in Agriculture 2003,41:139-155.
  • 4CHOI K Y,KIM S S.Morphological analysis and classification of types of surface corrosion damage by digital image processing[J].Corrosion Science,2005,47:1-15.
  • 5PACHOLSKI M L.Principal component analysis of TOF-SIMS spectra,images and depth profiles:an industrial perspective[J].Applied Surface Science,2004,231-232:235-239.
  • 6DISTANTE C,ANCONA N,SICILIANO P.Support vector machines for olfactory signals recognition[J].Sensors and Actuators B,2003,88:30-39.
  • 7张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 8刘联群,赵忠民.软磁铁氧体磁芯的自动分选[J].电子工艺技术,2000,21(6):262-264. 被引量:1
  • 9刘焕军,王耀南,段峰.机器视觉中的图像采集技术[J].电脑与信息技术,2003,11(1):18-21. 被引量:72

共引文献6

同被引文献74

  • 1王兰云,赵拥军.相控阵雷达多目标跟踪原理及数据关联算法研究[J].电光与控制,2007,14(1):30-33. 被引量:8
  • 2MOLER C,LOAN V.Nineteen dubious ways to compute exponential of matrix,twenty five years later[J].SIAM Review,2003,45(1):3-49.
  • 3TRUCCO E,PLAKAS K.Video tracking:A concise survey[J].IEEE Trans on Oceanic Engineering,2006,31(2):520-529.
  • 4MICHAEL G.Projective registration with difference decomposition[A].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].IEEE Computer Society Press,1997:331-337.
  • 5HAGERGD,BELHUMEURPN.Efficient region tracking with parametric models of geometry and illumination[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1998,20(10):1025-1039.
  • 6BUENAPOSADA J M,BAUMELA L.Real-time tracking and estimation of plane pose[A].Proceedings of 16th International Conference on Pattern Recognition[C].Canada:IEEE Computer Society Press,2002,2:697-700.
  • 7BAKER S,MATTHEWS I.Lucas-Kanade 20 years on:a unifying framework[J].International Journal of Computer Vision,2004,56(3):221-255.
  • 8OWREN B,WELFERT B.The Newton iterations on Lie Groups[R].Technical Report Numerics,1996.
  • 9EDUARDO B C,JAIME O A.Lie algebra approach for tracking and 3D motion estimation using monocular vision[J].Image and Vision Computing,2007,25(6):907-921.
  • 10MAHONY R,MANTON J H.The geometry of the Newton method on non-compact lie group[J].Journal of Global Optimization,2002,23(3-4):309-327.

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部