期刊文献+

网格环境下基于序贯博弈的性能-效率平衡型优化 被引量:2

Performance-Efficiency Balanced Optimization Based on Sequential Game in Grid Environments
下载PDF
导出
摘要 为优化应用执行性能和提高系统资源效率,针对网格环境下的资源映射问题,文中提出了一种基于序贯博弈的优化策略.该策略根据平衡的思想,将资源映射过程分为活动分发和处理器分配两个阶段,通过有限次博弈后获得优化解.文中还给出了衡量应用执行性能的重要参数——信任度的计算方法.仿真实验检验了优化策略的可行性和有效性.结果表明,与Min-Min算法相比,文中的优化策略具有更低的时间复杂度、更优的应用执行性能和更高的资源效率. In order to optimize the executing performance of applications and improve the resource utilization efficiency of a system, this paper deals with the resource mapping in grid environments and proposes a novel optimization strategy based on the sequential game. In this strategy, a balanced idea is used to divide the mapping process into two stages, namely the activity distribution and the processor allocation, and an optimal solution is obtained after a limited stage gaming. Moreover, trust degree, an important parameter to measure the executing performance of applications, is dealt with, and the corresponding calculating method is presented. Experimental results indicate that, as compared with the Min-Min strategy, the proposed optimal strategy is of lower time complexity, better executing performance of applications and higher resource utilization efficiency.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第1期92-96,107,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60673165)
关键词 网格计算 性能-效率平衡型优化 序贯博弈 资源映射 信任度 grid computing performance-efficiency balanced optimization sequential game resource mapping trust degree
  • 相关文献

参考文献14

  • 1Foster I, Kesselman C. The grid2: blueprint for a new computing infrastructure [ M ]. San Francisco: Morgan Kaufmann, 2004 : 45 - 63.
  • 2Berman F, Chien A, Cooper K, et al. The GRADS project : software support for high-level grid application development [ J ]. International Journal of High Performance Computing Applications ,2001,15 (4) :327-344.
  • 3Deelman E, Blythe J, Gil Y, et al. Mapping abstract complex workflows onto grid environments [ J ]. Journal of Grid Computing,2003,1 ( 1 ) :25-39.
  • 4Furmento N, Lee W, Mayer A, et al. ICENI : an open grid service architecture implemented with Jini [ C ] //Proceedings of ACM/IEEE Super Computing Conference. Baltimore : IEEE ,2002 : 1-10.
  • 5何晓珊,孙贤和,Gregor von Laszewski.QoS Guided Min—Min Heuristic for Grid Task Scheduling[J].Journal of Computer Science & Technology,2003,18(4):442-451. 被引量:77
  • 6Weng Chu-ling, Lu Xin-da. Heuristic scheduling for bagof-tasks applications in combination with QoS in the computational grid [ J ]. Future Generation Computer Systems,2005,21 (2) :271-280.
  • 7Dogan A, Ozguner F. On QoS-based scheduling of a metatask with multiple QoS demands in heterogeneous computing [ C]//Proceedings of International Symposium on Parallel and Distributed Processing. Fort Lauderdale: IEEE, 2002:50-55.
  • 8李志洁,程春田,黄飞雪,李欣.一种基于序贯博弈的网格资源分配策略[J].软件学报,2006,17(11):2373-2383. 被引量:27
  • 9Kwok Y K, Hwang K, Song S. Selfish grids : game-theoretic modeling and NAS/PSA benchmark evaluation [ J]. IEEE Transactions on Parallel and Distributed Systems, 2007, 18(5) :621-636.
  • 10Ghosh P, Roy N, Sajal K D, et al. A game theory based pricing strategy for job allocation in mobile grids [ C]// Proceedings of International Symposium on Parallel and Distributed Processing. Santa Fe : IEEE,2004:82-91.

二级参考文献6

共引文献101

同被引文献17

  • 1肖条军.博弈论及其应用[M].上海:上海三联书店,2003.
  • 2BUYYA R, ABRAMSON D, GIDDY J. An economic driven resource management architecture for global computational power grids [C]. Las Vegas: The 2000 International Conference on Parallel and Distributed Processing Techniques and Applications, 2000.
  • 3BUYYA R, ABRAMSON D, GIDDY J, et al. Eco- nomic models for resource management and scheduling in grid computing. Special issue on grid computing en- vironments[J]. The Journal of Concurrency and Com- putation Practice and Experience (CCPE), 2002, 14, (13-15) : 1507-1542.
  • 4DORIGO M, STUTZLE T. The ant colony optimiza- tion metaheuristic., algorithms, applications, and ad- vances [C]//Handbook of Metaheuristics, Norwell: Kluwer Academic Publishers, 2002.
  • 5BRAUN T D, SIEGEL H J, BECK N. A comparison of eleven static heuristics for mapping a class of inde- pendent tasks onto heterogeneous distributed compu- ting systems[J]. Journal of Parallel and Distributed Computing, 2001, 61(6): 810-837.
  • 6FOSTER I, KESSELMAN C. The grid2:blueprint for a new computing infrastructure[M]. San Francisco: Morgan Kaufmann Publishers Inc, 2004.
  • 7BUYYA R, Manzur Murshed. GridSim.. a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing [J]. The Journal of Concurrency and Computation: Practice and Experience, 2002,14(13-15) : 1175-1220.
  • 8BUYYA R, Murshedm, Abramsond. A deadline and budget constrained cost-time optimization algorithm for scheduling task farming applications on global grids [C]. Las Vegas:The 2002 International Conference on Parallel and Distributed Processing Techniques and Applications PDPTA'02, 2002.
  • 9Penmatsa S, Chronopoulos A T. Price-based user-optimal job allocation scheme for grid systems[ A1. Proceedings of the 20th international conference on Parallel and Distributed Processing[ C]. Washington DC: IEEE Computer Society, 2006: 336.
  • 10Teng F, Magoules F. A new game theoretical resource allocation algorithm for cloud computing [ A]. Bcllavista P, Chang R S. (Eds.). Advances in Grid and Pervasive Computing[ C]. Berlin: Springer, 2010: 321-330.

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部