期刊文献+

变学习速率在线ICA算法在雷达信号分选中的应用 被引量:7

Application of Variable Learning Rate On-line ICA Algorithm in Radar Signal Classification
下载PDF
导出
摘要 已有的独立分量分析(ICA)雷达分选方法多采用FastICA算法,FastICA算法是一种离线批处理ICA算法,缺乏实时分选能力。文中将一种变学习速率的在线ICA算法应用到雷达分选中,克服了FastICA算法无法实现在线实时分选的缺点;同时,算法能根据相依性测度所反映的信号分离的状态自适应地调节学习速率,平衡了传统在线ICA算法收敛速度和稳态误差之间的矛盾,从而使得采用这种ICA算法的雷达信号分选方法具有收敛速度快,分离效果好的特点。仿真实验验证了分选方法的有效性。 Recently,FastICA is used mostly in radar signal classification.FastICA is an off-line batch processing ICA algorithm and lacks function of real-time processing.In this paper,a variable learning rate on-line ICA algorithm is used for radar signal classification,and this classification method can overcome the disadvantage that FastICA can't perform real-time classification.Meanwhile,this ICA algorithm can adjust the learning rate on basis of the degree of signal separation which is reflected by measure of signal dependence,and balance the contradiction between convergence rate and steady error of traditional on-line ICA algorithms.Therefore,the method of radar signal classification using this ICA algorithm has the advantages of fast convergence and better separation performance.Computer simulation results showed effectiveness of the proposed classification method.
作者 邬诚
出处 《现代雷达》 CSCD 北大核心 2010年第1期52-56,共5页 Modern Radar
关键词 在线ICA 雷达信号分选 实时分选 学习速率 on-line ICA radar signal classification real-time classification learning rate
  • 相关文献

参考文献18

  • 1邓鹏飞,张剑云,游志刚.基于DSP的雷达信号分选实用技术[J].现代雷达,2005,27(8):79-82. 被引量:10
  • 2杨文华,高梅国.基于PRI的雷达脉冲序列分选方法[J].现代雷达,2005,27(3):50-52. 被引量:27
  • 3Comon P. Independent component analysis, a new concept [J]. Signal Processing, 1994, 36(3) : 287 -314.
  • 4李广彪,张剑云,毛云祥.一种新的雷达信号分选方法[J].电子对抗技术,2005,20(3):3-6. 被引量:5
  • 5海磊.独立分量分析在雷达信号分选上的应用[J].电子对抗,2007(3):13-17. 被引量:3
  • 6Hyvarinen A, Oja E. Fast fixed-point algorithm for independent component analysis [ J ]. Neural Computation, 1997, 9(7) :1483 - 1492.
  • 7Hyvarinen A, Oja E. Fast and robust fixed-point algorithm for independent component analysis [ J ]. IEEE Trans on Neural Networks, 1999, 10(3) : 626 -634.
  • 8Hyvarinen A, Oja E. Independent component analysis: algorithms and applications[J]. Neural Networks, 2000, 13: 411 -430.
  • 9Amari S. Natural gradient works efficiently in learning[ J ]. Neural Computation, 1998, 10(2):251-276.
  • 10Amari S, Cichocki A. Adaptive blind signal processing: neural network approaches[ J ]. Proc. of the IEEE, 1998, 86(10) : 2026 -2048.

二级参考文献111

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2张贤达,朱孝龙,保铮.Grading learning for blind source separation[J].Science in China(Series F),2003,46(1):31-44. 被引量:14
  • 3刘宏伟,张守宏,廖桂生.一种基于信号谱自相关特性的盲波束形成方法[J].西安电子科技大学学报,1997,24(1):58-65. 被引量:3
  • 4Hyvainen A. Fast and robust algorithm for independent component analysis. IEEE Transactions of Neural Network, 1999, 10 (5) : 626 - 634.
  • 5Hyvainen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation, 1997, 9:1 483 - 1 492.
  • 6Bell A J, Sejnowski T J. An information - maximization approach to blind separation and blind deconvolution. Neural Computation, 1995, 7 ( 6 ) :1 004-1 034.
  • 7Comm P. Independent component analysis, anew concept. Signal Processing, 1994,36- 287 -314.
  • 8Papadias C B, Paulraj A. A Constant modulus algorithm for multi-user signal separation in presence of delay spread using antenna arrays. IEEE Signal Processing Letters, 1997,4(7) : 178 - 181.
  • 9[1]Hyvarinen, A., Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Networks,1999, 10(3): 626-634.
  • 10[2]Giannakopoulos, V., Comparison of adaptive independent component analysis algorithms, Available at http://www.cis.hut. fi/~xgiannak/.

共引文献286

同被引文献71

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部