期刊文献+

Deleting Vertices and Interlacing Laplacian Eigenvalues 被引量:3

Deleting Vertices and Interlacing Laplacian Eigenvalues
原文传递
导出
摘要 The authors obtain an interlacing relation between the Laplacian spectra of a graph G and its subgraph G-U,which is obtained from G by deleting all the vertices in the vertex subset U together with their incident edges.Also,some applications of this interlacing property are explored and this interlacing property is extended to the edge weighted graphs.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2010年第2期231-236,共6页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China (No.10731040) the Shanghai Leading Academic Discipline Project (No.S30104)
关键词 Interlacing inequality EIGENVALUE SPECTRUM Laplacian matrix Laplacian特征值 顶点子集 交错 Laplacian谱 删除 加权图 财产
  • 相关文献

参考文献9

  • 1Brouwer, A. E. and Haemers, W. H., A lower bound for the Laplacian eigenvalues of a graph-Proof of a conjecture by Guo, Linear Algebra Appl., 429, 2008, 2131-2135.
  • 2Fiedler, M., Algebraic connectivity of graphs, Czech. Math. J., 23, 1973, 298-305.
  • 3Godsil, C. and Royle, G., Algebraic Graph Theory, Springer-Verlag, New York, 2001.
  • 4Grone, R., Merris, R. and Sunder, V. S., The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl., 11(2), 1990, 218-238.
  • 5Grone, R. and Merris, R., The Laplacian spectrum of a graph Ⅱ, SIAM J. Discrete Math., 7, 1994, 221-229.
  • 6Guo, J. M., On the third largest Laplacian eigenvalue of a graph, Linear and Multilinear Algebra, 55, 2007, 93-102.
  • 7Horn, R. A. and Johnson, C. R., Matrix Analysis, Cambridge University Press, Cambridge, 1985.
  • 8Lotker, Z., Note on deleting a vertex and weak interlacing of the Laplacian spectrum, Electronic J. Linear Algebra, 16, 2007, 68-72.
  • 9Mohar, B., The Laplacian spectrum of graphs, Graph Theory, Combin., Appl., 2, 1991, 871-898.

同被引文献11

  • 1隋永枫,钟万勰.大型不正定陀螺系统本征值问题[J].应用数学和力学,2006,27(1):13-20. 被引量:9
  • 2BUCKLEY J J. Fuzzy, eigenvalues and input-output analysis[J]. Fuzzy Sets and Systems, 1990,34(2) :187-195.
  • 3MASSA F. A comolete method for efficient fuzzy modal analysis [ J ]. Joumal of Sound and Vibration, 2008,309:63-85.
  • 4THEODOROU Y,DROSSOS C,ALEVIZOS P. Correspondeence analysis with fuzzy data: The fuzzy eigenvalue problem[J]. Fuzzy Sets and Systems ,2007,158 (7) :704-721.
  • 5WANG Yingmin, CHIN Kwai-sang. An eigenvector method for generating normalized interval and fuzzy weights[J]. Applied Mathematics and Computation,2006,181 : 1 257-1 275.
  • 6FRIDEMAN M. Fuzzy linear systems[J]. Fuzzy Sets and Systems,1998,96(2) :201-209.
  • 7MA Ming. Duality in fuzzy linear systems[ J ]. Fuzzy Sets and Systems ,2000,109 (1) : 55-58.
  • 8WU Cong-xin, MA Ming. Embedding problem of fuzzy number space:Part Ⅰ [ J ]. Fuzzy Sets and Systems, 1991,44 (1) :33- 38.
  • 9李婷婷,陆全,徐仲,李琳.拟次酉矩阵及其性质[J].纺织高校基础科学学报,2008,21(2):131-133. 被引量:2
  • 10田增锋,胡良剑.模糊线性系统解空间的结构[J].纺织高校基础科学学报,2008,21(2):161-166. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部