期刊文献+

基于Choquet模糊积分的运动目标检测算法 被引量:13

A Moving Object Detection Algorithm Base on Choquet Integrate
下载PDF
导出
摘要 本文提出了一种基于Choquet模糊积分的运动目标检测算法(CIMOD,Choquet Integrate-Based Moving Ob-ject Detection).将模糊测度和模糊积分理论应用于运动目标与背景分类中,提出了自适应阈值的Choquet积分算法,实现了图像的颜色特征和纹理特征相融合;选择YCbCr颜色空间代替传统RGB空间,将图像亮度与色度分离,降低了光照变化对运动检测的影响;利用局部二元模式(LBP,Local Binary Pattern)纹理特征对亮度级的单调变化具有不变性的特点,将其融合到检测算法中,有效抑制了阴影的干扰.仿真实验结果表明,即使在光照变化、阴影干扰等复杂背景情况下,该算法也能够准确的检测出运动区域. A moving object detection algorithm is presented, which base on Choquet fuzzy integral. This algorithm classifies the moving object and background using the fuzzy measure and fuzzy integrate theory, proposes a Choquet integrate algorithm with adaptive threshold to integrate the color features and texture feature; Chooses YCbCr color space instead of RGB space, which space can separate the intensity and the hue of image, to reduce the influence of illumination changing; introduces the Local Binary Pattern (LBP) texture feature to the detection algorithm, which is invariant to monotonic changes in pixel value scale, efficiently inhibits the shadows' disturbance. Experiment results indicate that background can be subtracted correctly by using this new algorithm, even ff the complex background with illumination changing and shadows.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第2期263-268,共6页 Acta Electronica Sinica
基金 国家863高技术研究发展计划(No.2008AA10Z224) 教育部博士点基金(No.20060183042) 国家自然科学基金(No.69883004 60573182) 吉林省科技发展计划(No.20060527)
关键词 运动目标检测 CHOQUET积分 YCBCR 局部二元模式 moving object detection Choquet integrate YCbCr local binary pattern
  • 相关文献

参考文献13

二级参考文献51

  • 1SasaG Loncaric S.Spatio-temporal image segmentation using optical flow and clustering algorithm [A]..First Int′l Workshop on Image and Signal Processing and Analysis [C].Pula,Croatia,2000.63-68.
  • 2[1]Toyama K, Krumm J, Brumitt B, et al. Wallfollower: principles and practice of background maintenance. Inter. Conf. on Computer Vision, 1999, Corfu, Greece, 224-261
  • 3[2]Huwer S, Niemann H. Adaptive change detection for real-time surveilliance application. 3rd IEEE Inter. Workshop on Visual Surveillance, Dublin, Ireland, July 2000, 37-45
  • 4[3]Wern C R, Azarbayejani A, Darrell T, et al. Pfinder:real-time tracking of human body. IEEE Transaction on Pattern Analysis and Machine Intelligence,1997, 19:780-785
  • 5[4]Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-Filtering. In: Proc. International Conf. on recent advances in mechatronics, ICRAM'95, Istanbul, Turkey, Aug. 1995:193-199
  • 6[5]Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction. ICCV Frame Rate Workshop, 1999:246-252
  • 7[6]Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. IEEE Conf. on CVPR.,1999:
  • 8[7]Rosin P L, Ellis T. Image difference threshold strategies and shadow detection. Proc. of the Sixth British Machine Vision Conference,1995,347-356
  • 9Baumberg A, Hogg D. learning flexible models from image sequenees[A].European Conference on Computer Vision[C].[s.l.]:Springer Verlag, 1994: 299-308.
  • 10Haritaoglu I, Harwood D, Davic L. W4---Who? where? when?what?: a real time system for detecting and tracking people[A].Proc IEEE Conference on Automatic Face and Gesture Recognition[C]. 199S: 222-227.

共引文献180

同被引文献152

引证文献13

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部