期刊文献+

结合DL-safe规则发现日志本体频繁模式的方法 被引量:1

An Approach for Discovering Frequent Patterns from Log Ontologies with DL-safe Rules
下载PDF
导出
摘要 为发现语义Web使用记录中所蕴含的有效信息,本文提出了一种挖掘日志本体频繁Web访问模式的方法.该方法引入应用访问规则集和观察集分别表示日志信息动态变化的语义规则和使用事实,并在DL安全的限定下将日志本体和应用访问规则集相结合构成一个推理过程可判定的混合知识库.在此基础上,利用日志本体中事件整分关系的语义构建访问模式学习的事务模型,并采用ILP的方法学习生成频繁用户访问模式树,解决了推理访问模式中非描述逻辑原子的问题.实验结果表明该方法的可用性和有效性. In order to discover the useful information from semantic Web usage records, we present an approach for mining the frequent Web access pattems from log ontologies. This method adopts application access-rules to represent the dynamic semantics rules of user-access and adopts observations to represent the usage facts. With the restriction of DL-safety, it combines log ontologies and application user-access rules into a decidable hybrid knowledge base. The transaction mode of access-pattern learning can be extracted form the semantics of the part-whole relations between events in log ontologies. A frequent Web access-pattern tree can be generated by an ILP method from the hybrid knowledge base. This method also solves the problem of reasoning the Web access - patterns with non-DL atoms. The experimental results show that this method is effective and it is quite feasible to solve practical problems.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第2期376-381,共6页 Acta Electronica Sinica
基金 国家'十一五'科技支撑计划重大资助项目(NO.2006BAH02A0407) 国家自然科学基金(NO.90604033)
关键词 语义网使用挖掘 日志本体 频繁Web访问模式 DL-safe规则 归纳逻辑编程 semantic Web usage mining frequent Web access pattem log ontology DL-safe ride inductive logic programming (ILP)
  • 相关文献

参考文献13

  • 1B Berendt, A Hotho, G Stumme . Usage Mining for and on the Semantic Web[ A ]. In: Data Mining Next Generation Challenges and Future Directions [ C ]. Boston: AAAI Press, 2004. 461 - 481.
  • 2N Stojanovic, J Gonzalez, L Stojanovic. ONTOLOGER: a system for usage-drivenmanagement of ontology-based information portals[A]. Proceedings of the 2nd Internati-onal Conference on Knowledge Capture[ C]. New York: ACM, 2003. 172 - 179.
  • 3F A Lisi. Principles of inductive reasoning on the semant-ic web:a framework for learning in AL-log[A]. Proceedi-ngs of the 3rd International Workshop on Principles and Practice of Semantic Web Reasoning, LNCS 3703 [ C ]. Heidelberg: Springer Berlin,2005.118 - 132.
  • 4JJozefowska, A Lawrynowicz, T Lukaszewski. A study of the SEMINTEC approach to frequent pattern mining[ A ]. Proceedings of Prior Conceptual Knowledge in Machine Learning and Knowledge Discovery [ C ]. Warsaw, Poland: 2007.41 - 52.
  • 5F M Donini, M Lenzerini, D Nardi, et al. AL-log: inte-grating datalog and description logics[ J]. Intelligent Info-rmation Systems, 1998,10(3) :227 - 252.
  • 6B Motik, U Sattler, R Studer. Query answering for OWL-DL with rules[J]. Web Semantics: Science, Services and Agents on the World Wide Web,2005,3( 1 ) :41 - 60.
  • 7B Motik, U Sattler. A comparison of reasoning techniques for querying large description logic ABoxes[A]. Proceed-ings of the 13th International Conference on Logic for Programming Artificial Intelligence and Reasoning [ C ]. Heidelberg: Springer Berlin, 2006.227 - 241.
  • 8M Sun, B Chen, M T Zhou. An ILP approach to mine the association rules on log ontology[ A]. Proceedings of the IEEE. International Conference on Apperceiving Compu- ring and Intelligence Analysis 2008 [ C]. Chengdu, China: IEEE Press , 2008. 274 - 278.
  • 9U Hustadt, B Motik, U Sattler. Reducing SHIQ? descry-ption logic to disjunctive datalog programs[ A]. Proceed-ings of the 9th Int. Conf. on the Principles of Knowledge Representation and Reasoning [C]. Whistler, Canada: 2004.152 - 162.
  • 10S Nijssen, J N Kok. Efficient frequent query discovery in Farmer[ A ]. Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases, LNCS 2838 [ C ]. Heidelberg: Springer Berlin, 2003. 350 - 362.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部