期刊文献+

平均1-依赖决策树集成算法 被引量:6

Averaged One-Dependence Decision Trees Ensemble Algorithm
下载PDF
导出
摘要 基于平均1-依赖贝叶斯分类器(AODE)算法的思想,提出了平均1-依赖决策树集成算法(AODT),该算法通过使用每个输入属性和类别属性共同建立集成学习中的个体决策树分类器.同时,我们从多任务学习的角度探讨了AODE和AODT算法的工作原理.通过在Weka平台上使用40个UCI数据集的实验结果表明,该算法可以显著提高决策树学习算法的分类性能,并且具有很好的抗噪声性能. Averaged One-Dependence Estimators (AODE) ensemble naive Bayes classifiers by aggregating the predictions of a set of one-dependence estimators built for each attribute. Inspired by this, in this paper we propose a new method, namely Averaged One-Dependence Trees (AODT), to ensemble decision tree teaming algorithms which enumerate each input attribute together with the class attribute to create different component one-dependence decision tree classifiers in the ensemble. We then give a multitask view of AODE and AODT to explain how they work. We conduct all the experiments on the Weka platform and use the 40 widely used UCI data sets. The experimental results verify the method's effectiveness, efficiency and robustness.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第2期434-438,共5页 Acta Electronica Sinica
基金 安徽省高校自然科学基金重大项目(No.ZD200904) 安徽省高校优秀青年人才基金(No.2009SQRZ075)
关键词 集成学习 多任务学习 决策树学习算法 平均1-依赖贝叶斯分类器 ensemble learning multi-task learning decision tree averaged one-dependence estimators
  • 相关文献

参考文献12

  • 1G I Webb,J Boughton Z Wang. Not so naive bayes: aggregating one-dependence estimators[ J ]. Machine Learning, 2005,58 (1):5-24.
  • 2Y Yang, G I Webb. To select or to weigh: A comparative study of linear combination schemes for superparent-one-eependence estimators[J]. IEEE Trans on Knowledge Discovery and Engineering, 2(107,19(12) : 1652 - 1665.
  • 3T G Diettefich. Ensemble methods in machine learning[ A]. 1st International Workshop on Multiple Classifier Systems [ C ]. Cagliari, Italy: Springer,2000,1587.1 - 15.
  • 4R E Banfield, L O Hall, K W Bowyer, W P Kegelmeyer. A comparison of decision tree ensemble creation techniques[ J]. IEEE Trans on Pattem Analysis and Machine Intelligence, 2007,29( 1 ) : 173 - 180.
  • 5R Caruana. Multi-task learning[ J]. Machine Learning, 1997,28 (1):41 -75.
  • 6J Baxter. A model for inductive bias learning[ J]. Journal of Artificial Intelligence Research,2000,12(1) : 149- 198.
  • 7王珏,周志华,周傲英.机器学习及其应用[M].北京:清华大学出版社,2006.
  • 8Z H Zhou, J X Wu, W Tang. Ensembling neural networks: many could be better than all[ J]. Artificial Intelligence,2002, 137( 1 ) : 239 - 263.
  • 9J Demsar, Statistical comparisons of classifiers over multiple data sets [ J ]. Journal of Machine Learning Research, 2006, 7 (1):1 -30.
  • 10C Blake, C J Merz. UCI repository of machine learning databases[ DB/OL ]. http://www. ics. uci. edu/ mlearn/ MLRepository. html, Department of ICS, University of California, Irvine, 1998.

共引文献33

同被引文献63

  • 1韩慧,毛锋,王文渊.数据挖掘中决策树算法的最新进展[J].计算机应用研究,2004,21(12):5-8. 被引量:47
  • 2张静,宋锐,郁文贤,夏胜平,胡卫东.基于混淆矩阵和Fisher准则构造层次化分类器[J].软件学报,2005,16(9):1560-1567. 被引量:27
  • 3刘镇波,刘一星,沈隽,刘明.层次分析法在乐器音板用木材振动性能评价中的应用[J].东北林业大学学报,2006,34(6):7-9. 被引量:4
  • 4王晓丹,孙东延,郑春颖,张宏达,赵学军.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版),2006,7(6):54-57. 被引量:22
  • 5Smith Tsang, Ben Kao, Kevin Y. Decision Trees For Uncertain Data [J]. IEEE transactions on knowledge and data engineering, 2011 ( 1 ) : 64 - 78.
  • 6Thangaparvathi, Anandhavalli, Mercy Shalinie. A High Speed Decision Tree Classifier Algorithm for Huge Dataste [ C ]. IEEE - International Conference on Recent Trends in Information Technology, May3- 5, 2011,10 (6) :695 - 700.
  • 7Naresh Manwani, P. S. Sastry. Geometric Decision Tree[J]. IEEE transactions system , 2011 ( 1 ) : 64 - 78.
  • 8Martfnez-Mtoz G, Su&ez A. Using Boosting to prune Bagging ensembles [ J]. Pattern Recognition Letters, 2007,28 ( 1 ) : 156 - 165.
  • 9Zhou Zlai-hua, Wu Jian-xin, Tang Wei. Ensembling neural net- works: many could be better than all [ J ]. Artificial Intelli- gence,21XE, 137 ( 1 - 2) :239 - 263.
  • 10Tao Hui, Xiao-ping Ma, Mei-ying Qiao. Subspaceselecfive en- semble algorithm based on feature clustering [ J ]. Journal of Computers, 2013,8(2) :509 - 516.

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部