期刊文献+

一种改进的CAIM算法 被引量:1

Modified Algorithm of CAIM
下载PDF
导出
摘要 在CAIM算法中,离散判别式仅考虑了区间中最多的类与属性间的依赖度,使离散化过度而导致结果不精确。基于此,提出对CAIM的改进算法,该算法考虑到按属性重要性从小到大顺序进行离散,同时根据粗糙集理论提出条件属性可分辨率概念,与近似精度同时控制信息表最终的离散程度,有效解决了离散化过度问题。实验通过C4.5和支持向量机分别对离散化后的数据进行识别和分类预测,结果证明了该算法的有效性。 In Class-Attribute Interdependency Maximization(CAIM) algorithm, discretization criterion only accounts for the trend of maximizing the number of values belonging to a leading class within each interval. The disadvantage makes CAIM generate irrational discrete results and further leads to the decrease of predictive accuracy of a classifier. This paper proposes a modified algorithm of CALM. With the algorithm, the importance of attributes is adopted in discretization process, and a concept of attribute discernibility rate is proposed based on rough set. Both attribute discernibility rate and approximate quality are used for discretization intervals, which effectively resolve the problem of over-discretization. By using C4.5 and SVM, experiments are performed respectively with the results of discreted data, which show that the presented algorithm is effective.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第4期77-78,81,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60372071) 中国科学院自动化研究所复杂系统与智能科学重点实验室开放课题基金资助项目(20070101) 辽宁省教育厅高等学校科学研究基金资助项目(2008344) 大连市科技局科技计划基金资助项目(2007A10GX117)
关键词 连续属性离散化 粗糙集 属性可分辨率 discretization of continuous attributes rough set attribute discernibility rate
  • 相关文献

参考文献4

  • 1Kurgan L A, Cios K J. CAIM Discretization Algorithm[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(2): 145-153.
  • 2徐燕,怀进鹏,王兆其.基于区分能力大小的启发式约简算法及其应用[J].计算机学报,2003,26(1):97-103. 被引量:39
  • 3Ching J Y, Wong A K C, Chan K C C. Class-dependent Discretization for Inductive Learning from Continuous and Mixed-mode Data[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995, 17(7): 641-651.
  • 4李国正,王猛.支持向量机导论[M].北京:电子工业出版社,2000.

二级参考文献10

  • 1[5]Starzyk J, Nelson D E, Sturtz K. Reducts. A mathematical foundation for improved reduct generation in information systems. Journal of Knowledge and Information Systems, 2000, 2(2):131~146
  • 2[6]Bazan J G, Skowron A, Synak P. Dynamic reducts as a tool for extracting laws from decisions tables. In: Ras Z W, Zemankiva M eds. Methodologies for Intelligent Systems. Berlin: Springer-Verlag,1994. 346~355
  • 3[7]Ziarko W. Variable precision rough sets model. Journal of Computer and Systems Sciences, 1993, 46(1):39~59
  • 4[8]Pawlak Z. Grzymala-Busse J, Slowinski R etal. Rough sets.Communications of the ACM, 1995, 38(11): 89~95
  • 5[11]Ying Wu, Thomas S Huang. Hand moeling, analysis, and recognition. IEEE Signal Processing Magazine, 2001(5):51~60
  • 6[12]Lin J, Wu Y, Huang T S. Modeling human hand constraint. In: Proceedings of Workshop on Human Motion. Austin, Texas USA,2000. 121~126
  • 7[1]Pawlak Z. Rough sets. International Journal of Computer and Information Science, 1982, 11(5): 341~356
  • 8[2]Wong S K M, Ziarko W. Optimal decision rules in decision table. Bulletin of Polish Academy of Sciences, 1985,33(11~12):693~696
  • 9[3]Hu Xiao-Hua. Knowledge discovery in databases:an attrbute oriented rough set approach[Ph D dissertation]. University of Regina, Regina, Canada,1995
  • 10[4]Starzyk J, Nelson D E, Sturtz K. Reducts in composed information systems. Bulletin of International Rough Set Society,1999,3(1~2):19~22

共引文献40

同被引文献12

  • 1谢宏,程浩忠,牛东晓.基于信息熵的粗糙集连续属性离散化算法[J].计算机学报,2005,28(9):1570-1574. 被引量:134
  • 2谷小红,蔡晋辉,周泽魁.基于声发射传感器与ChiMerge粗糙集的埋地水管泄漏检测[J].传感技术学报,2006,19(6):2470-2473. 被引量:2
  • 3Wu X D. Top 10 algorithms in data mining. Knowledge Information System, 2008, 14(1): 1-37.
  • 4Su C T, Hsu J H. An extended Chi2 algorithm for discretization of re- al value attributes. IEEE Transactions on Knowledge and Data Engi- neering, 2005, 17(3) : 437-441.
  • 5Dougherty J, Kohavi R, Sahami M. Supervised and unsupervised dis- cretization of continuous feature. Proceedings of 12th International Conference on Machine learning, 1995:194-202.
  • 6Schmidberger G, Frank E. Unsupervised discretization using tree- based density estimation. The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Data- bases (ECML PKDD) , 2005:240-251.
  • 7Biba M, Esposito F, Ferilli S, et al. Unsupervised discretization u- sing kernel density estimation. The Twentieth International Joint Conference on Artificial Intelligence (IJCAI), 2007:696-701.
  • 8Hettich S, Bay S D. The UCI KDDArchive. http://kdd, its. uci. edu/, 1999.
  • 9Demsar J. Statistical comparisons of classifiers over multiple data- sets. Journal of Machine Learning Research, 2006 , 7 ( 1 ) : 1-30.
  • 10Weka 3 Data mining software in Java. http ://www. cs. waikato, ac. nz/ml/weka, 2007.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部