期刊文献+

基于三点形状可调的二次三角Bzier曲线 被引量:4

Quadratic Trigonometric Bézier Curves Based on Three-Points Shape Parameters
下载PDF
导出
摘要 给出了二次三角多项式形式的Bzier曲线,基函数由一组带形状参数的二次三角多项式组成。由三个控制顶点生成的曲线具有与二次Bzier曲线类似的性质,但具有比二次Bzier曲线更好的逼近性。形状参数有明确几何意义:参数越大,曲线越逼近控制多边形。曲线可精确表示椭圆弧,还给出了两段三角多项式曲线的G2和C3连续的拼接条件。 Quadratic trigonometric polynomial Bezier curves with a shape parameter are presented in this paper. The trigonometric polynomial curves retain the main superiority of the quadratic Bezier curves. With the shape parameters, the trigonometric polynomial curves can approach more to the quadratic Bezier curves or to the given control polygon than the quadratic Bezier curves. Shape parameters have the property of geometry, the larger is the parameter, the more the curves approach to the control polygon. The curves represent ellipse and circle precisely. The G^2 and C^3-continuity condition of two-piece trigonometric polynomial Bezier curves are also discussed.
出处 《计算机工程与科学》 CSCD 北大核心 2010年第3期66-68,81,共4页 Computer Engineering & Science
基金 国家自然科学基金资助项目(10871208) 湖南省教育厅科研项目(08B027) 湖南科技大学科研启动金(E58126)
关键词 计算机应用 Bzier曲线 三角多项式 逼近性 形状参数 computer application Bezier curves trigonometric polynomial approximation shape parameter
  • 相关文献

参考文献15

  • 1Piegl L, Tiller M. The NURBS Book[M]. 2nd ed. Berlin.. Springer, 1997.
  • 2Pottmann H, Wagner M G. Helix Splines as an Example of Affine Tchebychefflan Splines[J].Adv Comput Math, 1994,2 (1) : 123-142.
  • 3Marnar E,Pena J M,Reys J S. Shape Preserving Alternatives to the Rational Bezier Model[J]. Computer Aided Geometric Design, 2001,18(1 ) : 37-60.
  • 4Schoenberg I J. On Trigonometric Spline Interpolation[J]. J Math Mech, 1964, 13: 795-825.
  • 5Faix I D,Partt M J. Computational Geometry for Design and Manufacture[M].Chichester: Ellis Horwood Ltd, 1979.
  • 6Lyche T,Winther R. A Stable Recurrence Relation for Trigonometric B-Spline[J]. J Approx Theory, 1979,25 : 266-279.
  • 7朱仁芝,程谟嵩.拟合任意空间曲面的三角函数方法[J].计算机辅助设计与图形学学报,1996,8(2):108-114. 被引量:48
  • 8Pena J M. Shape Preserving Representations for Trigonometric Polynomial Curves[J]. Computer Aided Geometric Design, 1997,14(1):5 -11.
  • 9HAN XuLi. Piecewise Quadratic Trigonometric Polynomial Curves[J]. Mathematics of Computation, 2003, 72 (243) : 1369-1377.
  • 10HAN XuLi. Quadratic Trigonometric Polynomial Curves with a Shape Parameter[J].Computer Aided Geometric Design, 2002,19(7) :479-502.

二级参考文献15

共引文献150

同被引文献18

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部