期刊文献+

一种改进的贝叶斯网弧定向算法研究 被引量:2

Research on a Modified Bayesian Network Arc Orienting Algorithm
下载PDF
导出
摘要 贝叶斯网络是用来表示变量集合概率分布的图形模式,它提供了一种方便地表示概率信息的方法,它可以表示因果关系,但并不局限于因果关系。贝叶斯网对不确定性问题有很强的推理能力,近几年来受到众多研究者的重视。贝叶斯网络中弧的定向是指在已经有了变量之间的依赖关系图的条件下确定变量之间的边的方向的过程。介绍了一种改进了贝叶斯网弧定向的方法,该方法结合了目前多种定向方法的优点,实验证明该算法优于已存在的弧定向方法。 Bayesian networks can be used to express the probability distributions on the graph pattern, and provide a convenient method to express the probability information, and can express cause relations, but do not limit the cause relations. Bayesian networks have strong reasoning ability in solving nondeterministic problems, and attract more and more attentions from lots of researchers. Orienting arcs of the Bayesian network are part of the learning network, which means to determine the directions of the edges after getting the dependence structure of a Bayesian network. We introduce an improved algorithm about orienting edges which combines the advantages of some other algorithms. Experimental results show that this algorithm can effectively orient the edges of Bayesian networks.
出处 《计算机工程与科学》 CSCD 北大核心 2010年第3期82-84,158,共4页 Computer Engineering & Science
关键词 贝叶斯网络 信息论 碰撞结点 交叉熵 Bayesian networks arc information theory collider cross-entropy
  • 相关文献

参考文献6

  • 1Cooper G, Herskovits E. A Bayesian Metod for the Induction of Probabilistic Networks from Data[J]. Machine Learning, 1992,9 (4) : 309-347.
  • 2Cheng Jie, Bell D, Liu Weiru. Learning Bayesian Networks from Data:An Efficient Approach Based on Information Theory[J].Artificial Intelligence, 2002,137 (1-2) : 43-90.
  • 3Suzuki J. A Construction of Bayesian Networks from Data- bases Based on a MDL Seheme[C]//Proe of the 9th Conf on Uncertainty in Artificial Intelligence, 1993 : 266-273.
  • 4Chickering D M. Learning Equivalence Classes of Bayesian Network Structures[J]. The Journal Machine Learning Research, 2002,2: 445-498.
  • 5李小琳,何湘东,苑森淼.基于信息论和遗传算法的Bayesian网络弧定向方法研究[J].复旦学报(自然科学版),2004,43(5):717-720. 被引量:4
  • 6孙伟,马绍汉.约束满足问题并行弧相容算法[J].计算机工程与科学,1997,19(1):10-14. 被引量:1

二级参考文献9

  • 1Heckerman D. A tutorial on learning Bayesian network[R]. Redmond: Microsoft Research, Tech Rep: MSR-TR-95-06, 1995.
  • 2Cheng Jie, Bell D, Liu Weiru. Learning Bayesian networks from data: An efficient approach based on information-theory[J].Artificial Intelligence,2002,137(1-2):43-90.
  • 3Lam W, Bacchus F. Learning Bayesian belief networks: An approach based on the MDL principle[J].Computational Intelligence,1994,10:269-293.
  • 4Yang S, Chang K C. Comparison of score metrics for Bayesian network learning[J]. IEEE Transactions on Systems, Man and Cybernetics,2002,32(3):419-428.
  • 5Gao Q, Li M. The minimum description length principle and its application to online learning of handprinted characters [A]. Proceedings of the International Joint Conference on Artificial Intelligence(IJCAI)[C].Los Altos, CA:Morgan Kaufmann,1989. 843-848.
  • 6Rissanen J. Modeling by shortest data description[J]. Automatica,1978,14:465-471.
  • 7朱雪龙.应用信息论基础[M].北京:清华大学出版社,2002..
  • 8王双成,林士敏,陆玉昌.用贝叶斯网络进行因果分析[J].计算机科学,2000,27(10):80-82. 被引量:5
  • 9何盈捷,刘惟一.由Markov网到Bayesian网[J].计算机研究与发展,2002,39(1):87-99. 被引量:14

共引文献3

同被引文献18

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部