期刊文献+

随机Kuramoto-Sivashinsky方程数值解的收敛性

Concergence of Numerical Solution for a Stochastic Kuramoto-Sivashinsky Equation
下载PDF
导出
摘要 文章讨论了一类随机Kuramoto-Sivashinsky方程解数值解的收敛性.随机Kuramo-to-Sivashinsky方程一般没有解析解,所以数值近似计算成为求其解的有利方法.我们利用Ito公式,Burkholder-Davis-Gundy不等式,Gronwall引理等证明了数值解收敛到精确解. We discuss the convergence of numerical solution for a class of stochastic Kuramoto-Sivashinsky eqution. In general, stochastic Kuramoto-Sivashinsky equation do not have explicit solut-ions,thus numerical approximation schemes are invaluable tools for exploring prop- erties. We use Ito formula,Burkholder-Davis-Gundy inequality and Gronwall lemma to prove that the numerical solution is converges to ture solution.
作者 何剑
出处 《太原师范学院学报(自然科学版)》 2009年第4期1-5,共5页 Journal of Taiyuan Normal University:Natural Science Edition
基金 2008年教育部科学技术重点研究项目(208160) 宁夏自然科学基金资助项目(NX0835)
关键词 随机Kuramoto—Sivashinsky方程 数值解 收敛 stochastic Kuramoto-Sivashinsky equation numerical solution convergence
  • 相关文献

参考文献9

  • 1Liu Wenan, Nie Zankan. Existence, uniqueness and exponential stability for stochastic age-dependent population[J]. Applied Mathematics and Compution, 2004,154 : 183-201.
  • 2Zhang Qimin,Zhao Hanchong. Numerical analysis for stochastic age-dependent population equations[J]. Applied Mathematics and Compution, 2005,176 : 210-223.
  • 3Zhang Qimin,Zhang Weiguo,Nie Zankan. Convergence of the Euler scheme for stochastic functional partial differential equations[J]. Applied Mathematics and Compution, 2004,155 : 479-492.
  • 4Hannelore Lisei. Existence of optimal and e-optimal controls for the stochastic Navier-Stokes equation[J]. Nonlinear Analysis,2002,51:95-118.
  • 5Liu W,Miroslav Krstic. Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation[J]. Nonlinear Analysis, 2001,43 : 485-50.
  • 6Christofides P D,Antonios Armaou. Global stabilization of the Kuramoto-Sivashinsky equation via distrbuted output feedback control[J]. System and Control Letters, 2001,39 : 283-294.
  • 7Hiroshi Shibata,Ryuji Ishizaki. Characterization of a system described by Kuramoto-Sivashinsky equation with Lyapunov exponent[J]. Physiea A, 1999,269 : 314-321.
  • 8Jinqiao Duan, Vincent J, Ervin. On the stochastic Kuramoto-Sivashinsky equation[J]. Nonlinear Analysis, 2001,44:205-216.
  • 9Lou Yiming,Panagiotis D, Christofides. Feedback control of surface roughness in sputtering process using the stochastic Kuramoto-Sivashinsky equation[J]. Computers and Chemical Engineering,2005,29:741-759.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部