期刊文献+

各向异性功能梯度材料板Ⅰ型裂纹断裂力学研究

Fracture Analysis of Mode I Crack in Anisotropic Functionally Graded Materials
下载PDF
导出
摘要 针对材料参数在厚度方向可按任意函数连续变化的梯度材料,给出了一个新的分层模型.恰当选取分析平面,使材料参数沿z轴方向按任意函数形式连续变化,利用该模型并借助复变函数方法,研究了各向异性功能梯度材料的Ⅰ型裂纹平面断裂问题.首次推出了材料参数沿梯度方向按任意函数连续变化的各向异性功能梯度材料板Ⅰ型裂纹尖端的应力场、位移场和梯度应力强度因子的理论计算公式.结果显示裂纹尖端应力场同样具有r反平方根的奇异性,因此可以运用广泛应用于均匀材料中的断裂力学方法来研究各向异性功能梯度材料问题. A new multi-layered model was developed for the functionally graded materials with arbitrarily varying function parameter in the detection of thickness. By selecting the analyzed plane reasonably, the materialrs parameter could successively vary in term with arbitrarily function in the derection of z axis. By using this mode and the function of complex variable method,the crack of anisotropic functionally graded materials was studied. The stress and strain fields and graded stress intensity factor near crack tip were firstly introduced. It shows that the stess remains the singular behavior of the inverse square root of r near the crack tip. So those methods which had been applied in homogeneous materials widely can be used to resolve those problems of FGMs.
出处 《太原师范学院学报(自然科学版)》 2009年第4期58-61,共4页 Journal of Taiyuan Normal University:Natural Science Edition
基金 山西省自然科学基金(2007011008)
关键词 功能梯度材料 Ⅰ型裂纹 梯度应力强度因子 断裂分析 functionally graded materials mode Ⅰcrack graded stress intensity factor fracture analysis
  • 相关文献

参考文献6

二级参考文献11

  • 1黄干云,汪越胜,余寿文.功能梯度材料的平面断裂力学分析[J].力学学报,2005,37(1):1-8. 被引量:45
  • 2杨维阳,张少琴.复合材料单层板非弹性主方向的裂纹尖端应变能释放率[J].应用数学和力学,1993,14(8):707-713. 被引量:6
  • 3Jin Z H,Batra R C. Some basic fracture mechanics concepts in functionally graded materials[J]. Journal of Mechanics and Physics of Solids,1996,44(8):1221-1235.
  • 4Anderson T L. Fracture Mechanics: Fundamentals and Applications[M]. CRC Press Boca Raton, USA,1995.
  • 5Sih G C, Chen E P. Mechanics of Fracure(Vol.6)[M]. Hague: Martinus Nijhoff Publishers,1981.
  • 6Zhang S Q, Valaire B T, Suhling J C, et al.An energy based mode Ⅲ fracture criterion for composites[J]. Engineering Fracture Mechanics, 1991,38(6):353-360.
  • 7Paulino G H. Gradient Elasticity Theory for Mode Ⅲ Fracture in Functionally Graded Materials[J]. Journal of Applied Mechanics, 2003, 70(4):531-542.
  • 8Gu P,Asaro R J. Cracks in Functionally Graded Materials[J]. International Journal of Solids and Structures,1997,34(1):1-17.
  • 9美国国家研究委员会.90年代的材料科学与材料工程[M].北京:航天工业出版社,1992..
  • 10余家荣.复变函数[M].北京:人民教育出版社,1979..

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部