期刊文献+

矩阵核心逆偏序的研究 被引量:2

The Research of Matrix Core Partial Ordering
下载PDF
导出
摘要 研究了矩阵的核心逆偏序,然后给出了核心逆偏序的若干性质及等价条件,得到了两个矩阵乘积反序律成立的条件,并进一步讨论了扰动后的核心逆偏序. In this paper, some properties and equivalent characterization of the core partial ordering of matrix are established. Also, condition for the reverse order law of the product of two matrics is obtained. And the core partial order under perturbation also hold is discussed.
作者 朱同平
出处 《广西民族大学学报(自然科学版)》 CAS 2009年第4期80-83,共4页 Journal of Guangxi Minzu University :Natural Science Edition
基金 广西民族大学研究生创新项目(gxun-chx2009092)
关键词 核心逆 偏序 反序率 扰动 Core inverse Partial ordering Reverse order law Perturbation
  • 相关文献

参考文献7

  • 1S. Mitra. On group inverse and the Sharp order[J]. Linear Algebra Appl. 1987,92(1) : 17--37.
  • 2J. K. Bakasalary, O. M. Bakasalary, Liu Xiaoji. Further properties of the star,left--star,right--star and minus orderings[J]. Linear Algebra Appl. 2003. 375: 83--94.
  • 3王志坚,刘晓冀.关于矩阵的Sharp序、*序和减序[J].数学研究,2003,36(1):75-81. 被引量:3
  • 4J. K. Bakasalary, O. M. Bakasalary, Liu Xiaoji. Relationships between partial orders of matrics and their powera[J]. Linear Algebra Appl. 2004, 379: 277--287.
  • 5庞永锋,杜鸿科.算子偏序的刻画及性质[J].Journal of Mathematical Research and Exposition,2007,27(4):889-895. 被引量:4
  • 6O. M. Bakasalary, Trenkler Gotz. Core inverse of matrices[J]. Linear and Muhilinear Algebra. 2009. (in press).
  • 7JR. E. Harting, K. Spindelbock. Matrices for whichandcommute[J]. Linear and Multilinear Algebra. 1984,14: 241--256.

二级参考文献14

  • 1[1]Drazin M P. Natural structures on semigroup with involution. Bull Math. Soc. 1978, 84:139-141.
  • 2[2]Baksalary J K, Pukesheim F. On the Lower, minus and star partial ordering of nonnegative definite matrices and their squares. Linear Algebra Appl. 1991, 151:135-141.
  • 3[3]Mitra S K. Group inverse and Sharp order. Linear Algebra Appl. 1987, 92:17-37.
  • 4[4]Hartwig R E, Styan G P H. On some characterizations of the star partial ordering for the matrices and rank subtractivity. Linear Algebra Appl. 1986, 82:145-161.
  • 5[5]Hartwig R W. How to partially order regular elements. Math. Japan, 1980, 25:1-13.
  • 6[6]Stepniak C. Two orderings on a convex cone of nonnegative definite matrices. Linear Algebra Appl. 1987, 94:263-272.
  • 7[7]Rao C R, Mitra S K. Generalized inverse of matrices and its applications. New York: Wiley, 1971.
  • 8[8]Davis C. Notions generalizing convexity for functions defined on spaces of matrices. Proc Symp Math Amer Soc Providence, 1963, 187-201.
  • 9BAKSALARY J K. Characterizations of minus and star orders between the squares of Hermitian matrices [J]. Linear Algebra Appl., 2004, 388: 53-59.
  • 10BAKSALARY J K. Relationships between partial orders of matrices and their powers [J], Linear Algebra Appl., 2004, 379: 277-287.

共引文献4

同被引文献16

  • 1陈永林.计算常用广义逆的一类统一的迭代法[J].高校应用数学学报(A辑),1995,10(1):50-56. 被引量:4
  • 2WEI Yiming. A characterization and representation of the generalized inverse A^T,S(2) sand its applications [J]. Linear Algebra and Its Applications, 1998,280: 88-91.
  • 3WEI Yiming. A characterization and representation of the Drazin inverse [J]. SIAMJ Matrix Anal Appl,1996,17:744-747.
  • 4JOSHI V N. Remarks on iterative methods for computing the generalized inverse [J]. Studia Sci Math Hungar, 1973,8: 457- 461.
  • 5WANG Guorong, WEI Yiming, QIAO Sanzheng. Generalized inverses:theory and applications [M]. Beijing:Science Press, 2004.
  • 6HARTWIG R E, SPINDELBOCK K. Matrices for which A^* and A commute [J]. Linear and Multilinear Algebra, 1984, 14 : 241-256.
  • 7MARSAGLIA G, STYAN G P H. Equalities and inequalities for ranks of matrices [J]. Linear and Multilinear Algebra, 1974,2 : 269-292.
  • 8CASTRO N, KOLIHA J J, WEI Y M. Integral representation of Drazin inverse A[J].Electronical Journal of Linear Alge- bra, 2002, 9:129-131.
  • 9WEI Y M. Integral representation of W-Drazin inverse[J]. Appl Math Comput, 2003, 144:3-10.
  • 10WEI Y M, WU H. The representation and approximation for the weghted Moore-Penrose inverse [ J ]. Appl Math Comput, 2001, 12:17-28.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部