期刊文献+

H3N2型猪流感病毒M2蛋白表达分析 被引量:5

Characterization of M2 gene of H3N2 subtype swine influenza virus
原文传递
导出
摘要 流感病毒的M2蛋白在流感病毒复制中起着重要作用,是抗流感病毒的靶标分子。本研究以提取的病毒基因组RNA作为模板,RT-PCR扩增H3N2亚型猪流感病毒M2基因,分别构建了重组原核表达载体和重组真核表达载体,建立了M2蛋白的原核和真核表达系统。通过大肠杆菌表达系统,制备了M2重组蛋白,并免疫大鼠制备了多克隆抗体。Western blotting和间接免疫荧光方法检测表明所制备的抗体能识别真核表达的M2蛋白和病毒感染细胞后表达M2蛋白,具有良好的特异性。重组M2真核表达载体转染Vero细胞,表达的重组M2蛋白大小为20kDa,定位于细胞浆中,与病毒感染细胞中的M2蛋白定位相同。Western blotting检测表明M2蛋白在病毒感染细胞12h后才能检出,晚于NS1、NP和M1,属于病毒复制的晚期蛋白,可作为病毒复制晚期的指示分子。本研究为弄清M2蛋白在病毒复制过程中的生物学功能奠定了基础。 M2 protein of influenza A virus is encoded by a spliced mRNA derived from RNA segment 7 and plays an important role in influenza virus replication. It is also a target molecule of anti-virus drugs. We extracted the viral genome RNAs from MDCK cells infected with swine influenza A virus (SIV) H3N2 subtype and amplified the SIV M2 gene by reverse transcriptase-polymerase chain reaction using the isloated viral genome RNAs as template. The amplified cDNA was cloned into a prokaryotic expression vector pET-28a(+) (designated pET-28a(+)-M2) and a eukaryotic expression vector p3xFLAG-CMV-7.1 (designated p3xFLAG-CMV-7.1-M2), respectively. The resulted constructs were confirmed by restriction enzyme digestion and DNA sequencing analysis. We then transformed the plasmid pET-28a(+)-M2 into Escherichia coli BL21 (DE3) strain and expressed it by adding 1 mmol/L of IPTG (isopropyl-13-D-thiogalactopyranoside). The recombinant M2 protein was purified from the induced bacterial cells using Ni^2+ affinity chromatography. Wistar rats were immunized with the purified M2 protein for producing polyclonal antibodies specific for it. Western blotting analysis and immunofluorescence analysis showed that the produced antibodies were capable of reacting with M2 protein expressed in p3xFLAG-CMV-7.1-M2-transfected cells as well as that synthesized in SIV-infected cells. We also transfected plasmid p3xFLAG-CMV-7.1-M2 into Vero cells and analyzed its subcellular localization by immunofluorescence.The M2 protein expressed in the Vero cells was 20 kDa in size and dominantly localized in the cytoplasm, showing a similar distribution to that in SIV-infected cells. Western blotting analysis of SIV-infected cells suggested that M2 was a late phase protein, which was detectable 12 h post-infection, later than NS1, NP and M1 proteins. It would be a potential molecular indicator of late phases replication of virus. Our results would be useful for studying the biological function of M2 protein in SIV replication.
出处 《生物工程学报》 CAS CSCD 北大核心 2010年第1期16-21,共6页 Chinese Journal of Biotechnology
基金 上海市浦江人才计划(No.07pj14109) 中央级公益性科研院所基本科研业务费专项资金重点项目(No.2007JB0264)资助~~
关键词 H3N2 猪流感病毒 M2蛋白 多克隆抗体 swine influenza virus, H3N2 subtype, M2 protein, gene expression
  • 相关文献

参考文献14

  • 1Wang TT, Peter P. Unraveling the mystery of swine influenza virus. Cell, 2009, 137: 983-985.
  • 2Bui M, Whittaker G, Helenius A. The effect of M1 protein and low pH on nuclear transport of influenza virus vRNPs. J Virol, 1996, 70: 8391-8401.
  • 3Zhirnov OP. Isolation of matrix protein M1 from influenza viruses by acid-dependent extraction with nonionic detergent. Virology, 1992, 186: 324-330.
  • 4Lamb RA, Krug RM. In Fields Virology. 4th ed. Philadelphia: Lippincott Williams Wilkins, 2001 : 1487-1531.
  • 5Stouffer AL, Acharya R, Salom D, et al. Structural basis for the function and inhibition of an influenza virus proton channel. Nature, 2008, 451(7178): 596-599.
  • 6Schnell JR, Chou JJ. Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 2008, 451(7178): 591-595.
  • 7Lamb RA, Zebedee SL, Richardson CD. Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell, 1985, 40(3): 627-633.
  • 8Treanor JJ, Tierney EL, Zebedee SL, et al. Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice. J Virol, 1990, 64(3): 1375-1377.
  • 9Ciampor F, Bayley PM, Nermut MV, et al. Evidence that the amantadine-induced, M2-mediated conversion of influenza A virus hemagglutinin to the low pH conformation occurs in an acidic trans Golgi compartment. Virology, 1992, 188: 14-24.
  • 10Marshak DR, Kadonaga JT, Burgess RR, et al. Strategies for Protein Purification and Characterization: A Laboratory Course Manual. New York: Cold spring Harbor Laboratory Press, 1996: 148-156.

二级参考文献20

  • 1Straw BE, D'Allaire S, Mengeling WL, et al. Disease of Swine. 8th Ed. Ames, Iowa, USA: Iown Sstate Press, 1999: 277-290.
  • 2Harlbur PG. Defining the causes of PRDC[C]. Swine consultant, Pfizer Animal Health, 1996, fall: 4-15.
  • 3Van Reeth K. Avian and swine influenza viruses: Our current understanding of the zoonotic risk. Vet Res, 2007, 38(2): 243-260.
  • 4Reid AH, Fanning TG, Hultin JV, et al. Origin and evolution of the 1918 "Spanish" influenza virus hemagglutinin gene. Proc Natl Acad Sci USA, 1999, 96(4): 1651-1656.
  • 5Ito T, Kawaoka Y, Vines A, et al. Continued circulation of reassortant H1N2 influenza viruses in pigs in Japan. Arch Virol, 1998, 143(9): 1773-1782.
  • 6Reid AH, Fanning TG, Janczewski TA, et al. Characterization of the 1918 "Spanish" influenza virus matrix gene segment. J Virol, 2002, 76(21): 10717-10723.
  • 7Itoh M, Hotta H. Structure, function and regulation of expression of influenza virus matrix M1 protein. Nippon Rinsho, 1997, 55(10): 2581-2586.
  • 8Helenius A. Unpacking the incoming influenza virus. Cell,1992, 69(4): 577-578.
  • 9Elster C, Larsen K, Gagno J, et al. Influenza virus M1 protein binds to RNA through its nuclear localization signal. J Gen Virol, 1997, 78 (Pt 7): 1589-1596.
  • 10Sha B, Luo M. Structure of a bifunctionat membrane RNA binding protein: influenza virus matrix protein M1. Nat Struct Biol, 1997, 4(3): 239-244.

同被引文献39

  • 1戴双双,何凤田,杨朝辉,彭家和,李蓉芬,张艳,陈麟凤.人可溶性APRIL基因的克隆、表达及生物学活性检测[J].中国生物化学与分子生物学报,2005,21(1):61-64. 被引量:5
  • 2董伟,董晓慧,楚雍烈,杨娥,胡刚,郑建武.人杀菌渗透增强性蛋白N末端片段在大肠杆菌中的表达[J].西安交通大学学报(医学版),2006,27(1):11-14. 被引量:2
  • 3Mackenzie J S. The ecology of Japanese encephalitis by vaccination: Minutes of a WHO/CVI meeting, Bangkok, I3-15 October 1998[J].Vaccine, 2000, 18(Suppl2):l- 25.
  • 4Gould E A, Solomon T, Mackenzie J S. Does antiviral therapy have a role in the control of Japanese encephalitis?[J]. Antiviral Res, 2008,78(1):140-149.
  • 5Paola G A, Debra B R, Chiara N A, et al. Multiple enzymatic activities with recombinant NS3 protein of hepatitis C virus [J]. J Virol, 1997, 71: 2583-2590.
  • 6Kadare G Haenni A L. Virus-encoded RNA helicase [J]. J Virol, 1997, 71(14): 2583--2590.
  • 7Deng L, Fuji M N, Tanaka M, et al. NS3 protein of Hepatitis C virus associates with the tumour suppressor p53 and inhibits its function in an NS3 sequence-dependent manner [J]. J Gen Virol, 2006, 87(6):1703-1713.
  • 8Tanaka M, Fuji M N, Deng L, et aL Single-point mutations of hepatitis C virus NS3 that impair p53 interaction and anti-apoptotic activity of NS3 [J]. Biochem Biophys Res Commun, 2006, 340(3):792-799.
  • 9Kim L. Advanced Engineered Pesticide[M]. New York: Marcel Dekker Inc, 1993.
  • 10Shehon A M, Zhao J Z, Roush R T. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plant [J]. Annual Review of Entomology, 2002, 47:845-881.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部