期刊文献+

基于粗糙集理论和朴素贝叶斯分类算法的汽轮发电机振动故障诊断 被引量:1

DIAGNOSIS OF VIBRATION FAULT ON TURBO-GENERATOR SET BASED ON ROUGH SET THEORY AND NAIVE BAYESIAN CLASSIFICATION ALGORITHM
下载PDF
导出
摘要 汽轮发电机组结构及振动的复杂性使其故障具有多层次性和随机性,以及故障信息不完整性等特点。对此,提出了一种基于粗糙集理论与朴素贝叶斯分类算法的汽轮发电机组振动故障诊断方法。通过粗糙集理论求取最小属性约简集,并在此基础上利用朴素贝叶斯分类算法诊断出故障概率最大的区,最后针对具体的故障设定值对该方法进行验证。实际算例结果表明,该方法能在故障信息不完整甚至丢失核心属性的情况下得到较好的诊断结果,提高了系统诊断的容错性。 The complexity of turbo- generator set 's structure and it's vibration make its fault to have multigradation and randomness,as well as the fault information being not complete. For this,a method to diagnose fault of turbo -generator set's vibration based on rough set theory and naive Bayesian classificatin algorithm has been put forward. The minmum attribute reduction set is sought by using the rough set,and then the bigger area in which the faults may occur has been diagnosed by using the naive Bayesian classification algorithm, and finally, directing against the concrete fault settings, the said method being validated. Results of practical calculation examples show that the the said method can get better diagnosis result when the fault information isn't complete, and even the kernel attribute being lost, enhancing the fault - tolerance capability of the diagnosis system.
出处 《热力发电》 CAS 北大核心 2010年第2期28-31,36,共5页 Thermal Power Generation
关键词 汽轮发电机组 振动故障诊断 粗糙集理论 朴素贝叶斯分类算法 属性约简 故障概率 turbo - generator set vibration fault diagnosis rough set naive Bayesian classification algorithm attribute reduction fault probability
  • 相关文献

参考文献2

二级参考文献10

  • 1陆颂元.D29型200MW汽轮机组振动分析及振动设计有关问题[J].动力工程,1995,15(3):8-16. 被引量:9
  • 2[5]Pawlak Z. Rough Sets. International Journal of Information and Computer Science, 1982,11(5) : 341~356
  • 3[6]Pawlak Z. Rough Sets and Intelligent Data Analysis.Information Sciences, 2002, 147 (1~4): 1~12
  • 4[7]Ou Jian, Sun Caixin, Bi Weimin, et al. A Steam Turbinegenerator Vibration Fault Diagnosis Method Based on Rough Set. In: Proceedings of 2002 International Conference on Power System Technology, Vol 3. Piscataway (NJ): IEEE, 2002.1532~1534
  • 5[8]Shen Lixiang, Tay Francis E H, Qu Liangsheng, et al. Fault Diagnosis Using Rough Sets Theory. Computers in Industry,2000, 43(1): 61~72
  • 6[9]Skowron A, Rauszer C. The Discernibility Matrices and Functions in Information System. Slowinski R. Intelligent Decision Support-Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht: Kluwer Academic Publishers, 1992. 331~362
  • 7[10]Wang Jue, Wang Ju. Reduction Algorithms Based on Discernibility Matrix: The Ordered Attributes Method.Computational Intelligence, 2001, 16(6): 489~504
  • 8[11]hrn A. Discernibility and Rough Sets in Medicine: Tools and Applications, Doctoral Dissertation. Trondheim (Norway):Norwegian University of Science and Technology, Department of Computer and Information Science, 1999
  • 9[12]Hu X, Cercone N. Discovering Maximal Generalized Decision Rules Through Horizontal and Vertical Data Reduction.Computational Intelligence, 2001,17(4): 685~702
  • 10[13]Pawlak Z. Theorize with Data Using Rough Sets. In:Proceedings of 26th Annual International Computer Software and Applications Conference. Los Alamitos (CA): IEEE Computer Society, 2002. 1125~1128

共引文献33

同被引文献25

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部