期刊文献+

多目标连续博弈混合弱Pareto-Nash平衡点的存在性

The existence of mixed weakly Pareto-Nash equilibrium points of multi-objective continuous games
下载PDF
导出
摘要 首先给出了纯策略集是紧度量空间的多目标连续博弈混合弱Pareto-Nash平衡点的定义,其次证明了此多目标连续博弈的混合弱Pareto-Nash平衡点的存在性.作为应用,我们导出了Glicksberg在1952年所证明的连续博弈混合策略Nash平衡点的存在性. In this paper, we first give the notion of weakly Pareto-Nash equilibrium points in multiobjective continuous games with compact metric spaces of pure strategies. Then we prove that the existence theorem of weakly Pareto-Nash equilibrium points for multiobjective continuous games. As applications, we show the existence of Nash equilibrium points of continuous games which Glicksberg proved in 1952.
出处 《贵州师范大学学报(自然科学版)》 CAS 2010年第1期81-83,94,共4页 Journal of Guizhou Normal University:Natural Sciences
基金 贵州省教育厅自然科学基金(黔科合J字[2007]2007号) 贵州师范大学科技处研究生研究项目资助
关键词 多目标连续博弈 混合弱Pareto-Nash平衡点 存在性 multi-objective games mixed weaking Pareto-Nash equilibrium points existence
  • 相关文献

参考文献7

  • 1Fan K. Fixed Point and minimax theorems in locally convex linear spaces[J]. Proc. Nat. Acad. Sci. U. S. A, 1952, 38: 121-126.
  • 2Glicksberg I L. A further generalization of the kakutani fixed point theorem with application to Nash equilibrium points[J]. Proc. Amer. Math. Sco. , 1952, 3: 170- 174.
  • 3Al-Najjar N. Strategically stable equilibria in games with infinitely many pure strategies [ J ]. Math Soc Sci, 1995, 29 : 151-164.
  • 4Zhou Y H, Yu J, Xiang S W. Essential stability in games with infinitely many pure strategies[J]. Int J Game Theory, 2007, 35: 493-503.
  • 5Yang H, Yu J. On essential components of the solution set of weakly Pareto-Nash equilibrium points[ J]. Applied Math. Letters, 2002, 15: 553-560.
  • 6王庆东,侯海军,肖刚.Minty向量似变分不等式与向量优化问题[J].西南大学学报(自然科学版),2008,30(6):37-40. 被引量:8
  • 7屈德宁,丁协平.一类集值映像的拟平衡问题[J].四川师范大学学报(自然科学版),2007,30(2):173-177. 被引量:3

二级参考文献31

  • 1方敏,丁协平.乘积G-凸空间内的广义混合向量平衡组问题[J].四川师范大学学报(自然科学版),2004,27(5):476-480. 被引量:1
  • 2丁协平.拓扑空间内有上下界的拟平衡问题(英文)[J].四川师范大学学报(自然科学版),2004,27(6):551-558. 被引量:6
  • 3杨明歌,邓磊.拓扑空间中关于容许集值映象的重合点定理(英文)[J].西南师范大学学报(自然科学版),2005,30(5):782-787. 被引量:7
  • 4屈德宁,丁协平.一类抽象广义矢量平衡问题[J].四川师范大学学报(自然科学版),2006,29(3):280-284. 被引量:4
  • 5[1]Yang X M,Yang X Q,Teo K L.Some Remarks on the Minty Vector Variational Inequality[J],Journal of Optimization Theory and Applications,2004,121(1):193 -201.
  • 6[2]Minty G J.On the Generalization of a Direct Method of the Calculus of Variations[J].Bulletin of American Mathemati-cal Society,1967,73:314-321.
  • 7[3]Giannessi F.On Minty Variational Principle,New Trends in Mathematical Programming[M].Boston:Kluwer Academ-ic Publishers,1998:93 -99.
  • 8[4]Crespi G P,Ginchev I,Roeca M.Existence of Solutions and Star-Shapedness in Minty Variational Inequalities[J].Jour-nal of Global Optimization,2005,32:485 -494.
  • 9[5]Yang X M,Yang X Q,Tee K L.Generalized Invexity and Generalized Invariant Monotonicity[J].Journal of Optimiza-tion Theory and Applications,2003,117(3):607 -625.
  • 10[6]Yang X Q.Vector Variational Inequality and Vector Pseudolinear Optimization[J].Journal of Optimization Theory and Applications,1997,95:729-734.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部