摘要
在文[1]中,给出了带有任意4次齐次多项式Q(x,y)的函数芽f1(x,y)=x2y+Q(x,y)的一个特殊性质:芽f1的轨道是4-开的等价于Q(x,y)中y4项的系数不为零.将芽f1的这一特殊性质推广到某些具有类似形式的函数芽中去,且给出了它们的标准形式.
A special property of the function germs f1 (x ,y) = x^2y + Q(x ,y) with an arbitrary homogeneous polynomial Q(x,y) of degree 4 was given in [ 1 ]. The orbit off1 (x,y) is 4-open, which is equivalent to the fact that the coefficient ofy4 in Q(x,y) is non-zero. In this paper, the special property is generalized to some function germs with similar forms and their normal forms are given.
出处
《贵州师范大学学报(自然科学版)》
CAS
2010年第1期84-87,共4页
Journal of Guizhou Normal University:Natural Sciences
基金
贵州科学技术基金([2005]2004号)
贵州民族学院学生科研基金
关键词
二元函数芽
轨道为4-开
特殊性质
标准形式
function germs of two variables
4-open orbit
special property
normal forms