摘要
提出了一种2SPS+RPRR型4自由度并联机构,该机构具有两根直线驱动分支和一根非直线驱动分支。通过调整非直线驱动分支中定长杆的长度,可以改变机构的运动性质和工作空间。运用修正的Kutzbach Grübler公式计算了机构的自由度。在机构位置解析公式的基础上,采用移动Jacobian和转动Jacobian对机构的速度进行了分析。运用CAD变量几何法求解了机构的工作空间。所提出的2SPS+RPRR并联机构具有3个分支和4个自由度,相比于其它4自由度并联机构来说,结构相对简单,工作空间较大。
A 2SPS+RPRR 4-DOF (degree of freedom) parallel manipulator is proposed, which has two linear driving limbs and one nonlinear driving limb. The kinematic character and workspace of the manipulator can be changed by varying the length of the fixed dimension leg. The revised Kutzbaeh Griibler formula is used to calculate the manipulator freedom. Based on position analytic formulae, translational and rotational Jacobian are adopted to analyze the manipulator velocity. CAD variable geometry technique is used to solve the workspace of the manipulator. The presented 2SPS+RPRR parallel manipulator has three limbs and four degrees of freedom. It has a simpler structure and a larger workspace comparing with other 4-DOF parallel manipulators. In addition, vibration is decreased as the rotational actuator is assembled near the basement.
出处
《燕山大学学报》
CAS
2010年第1期18-23,共6页
Journal of Yanshan University
基金
教育部博士点基金资助项目(20060216006)
关键词
并联机构
运动学
工作空间
CAD变量几何法
parallel manipulator
kinematics
workspace
CAD variable geometry technique