期刊文献+

不同水下仿生推进器性能影响的比较 被引量:4

Comparative Study on the Propulsive Performance of Underwater Bionic Thrusters With Different Transmission Methods
下载PDF
导出
摘要 各种模拟鱼类游动的水下仿生推进器,较传统的螺旋桨推进器有着低噪音、低扰动、高效率等突出优点。决定仿生推进器各个性能的重要因素之一,就是仿生推进器内部运动和动力的传动方式。比较分析了采用功能材料驱动、摆动舵机直接驱动、旋转伺服电机加运动变换机构驱动、液压传动等不同传动方式下仿生推进器的结构特点、运动自由度、推进性能,以及适应负载变化的特性,最后指出液压传动是一种综合性能较好的传动方式。液压传动的仿生推进器初步试验表明,该传动方式的结构简单紧凑、驱动能力强、可移植性好、具有优良的动力特性,有着广阔的应用前景和研究价值。 Imitating fish swimming motion, the underwater bionic thruster has excellent characteristics to traditional screw thruster, such as low noise, little disturbance of the fluid and high swimming efficiency. One of the most important factors affecting the bionic thruster performance is the transmission method of motion and power. In this paper, the bionic thruster structure, moving freedom, propulsive velocity and force, and the adaptive ability of load are discussed among different transmission methods, such as SMA, artificial muscle, swinging motor, rotating motor with a motion transforming machine, and the fluid drive. Finally, the analysis shows that, the fluid drive is found a comprehensive balanced method with several advantages. The experiments of the bionic thruster driven by hydraulic system reveal that the fluid drive method has a simple and compact structure, with powerful propulsion, easy transplant and wonderful dynamic character, so it will gain much attention in the future research work.
出处 《机械设计与研究》 CSCD 北大核心 2010年第1期93-96,共4页 Machine Design And Research
基金 国防基础科研资助项目:(28200613) 国家自然科学基金资助项目(60805037) 国家863计划资助项目(2006AA09Z235)
关键词 仿生推进器 传动方式 形状记忆合金(SMA) 液压系统 试验 bionic thruster transmission method SMA, hydraulic system experiment
  • 相关文献

参考文献12

二级参考文献74

  • 1汪大经,王敏德.钛对抗磨白口铸铁组织和性能的影响[J].球铁,1989(3):19-22. 被引量:3
  • 2李运华,史维祥.流体动力技术的现状与发展[J].机床与液压,1994,22(4):187-193. 被引量:14
  • 3李运华,史维祥,林廷圻.近代液压伺服系统控制策略的现状与发展[J].液压与气动,1995,19(1):3-6. 被引量:44
  • 4陈光昀,刘顺华,任保鲁特,王国鑫,周俊林,隋桂馨.碲对白口铸铁和冷硬铸铁组织和性能的影响[J].铸造,1989,38(1):9-11. 被引量:4
  • 5王光明,胡天江,李非,沈林成.长背鳍波动推进游动研究[J].机械工程学报,2006,42(3):88-92. 被引量:23
  • 6McMicheal J M, Francis M S. Micro Air Vehicles Toward a New Dimension in Flight[ R]. USA: DARPA/TTO, 1997.2-3.
  • 7Pornsin-Sirirak T N, Lee S W, Nassef H,et al. MEMS wing technology for a battery-powered ornithopter[ A]. Proceedings of the 13th IEEE Annual International Conference on Micro Electro Mechanical Systems[ C ]. Miyazaki: IEEE, 2000. 799 - 804.
  • 8Hewish M. A bird in the hand-miniature and micro air vehicles challenge conventional thinking[J]. Jane's International Defense Review,1999,32(11) :22 -28.
  • 9Fearing R S,Chiang K H,et al. Wing transmission for a micromechanical flying insect [ A ]. Proceedings of the 2000 IEEE International Conference on Robotics and Automation[ C]. San Francisco: IEEE,2000. 1509 - 1516.
  • 10Sugano S, Kato I. WABOT-2: autonomous robot with dexterous fingerarm-finger-arm coordination control in keyboard performance [ A ].Proceedings nf the 1987 IEEE International Conference on Robotics and Automation[ C]. Raleigh: IEEE, 1987.2096 -2102.

共引文献217

同被引文献20

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部